DOI QR코드

DOI QR Code

Analysis of Generating Mechanism of Secondary Flows in Turbulent Open-Channel Flows using DNS Data

DNS 자료를 이용한 개수로에서 이차흐름의 생성메커니즘 분석

  • 정영훈 (연세대학교 대학원 토목공학과) ;
  • 최성욱 (연세대학교 사회환경시스템공학부)
  • Received : 2005.04.12
  • Accepted : 2005.10.31
  • Published : 2006.03.30

Abstract

Using DNS data for turbulent flows in an open-channel with sidewalls, the mechanisms by which secondary flows are generated and by which Reynolds shear stresses are created, are demonstrated. Near the sidewall, secondary flows invading towards the sidewall are observed in the regions of both lower and upper corners, while secondary flows ejecting from the sidewall towards the center of the channel are created elsewhere. The distributions of Reynolds shear stresses near the sidewall are analyzed, connecting their productions with coherent structures. A quadrant analysis shows that sweeps are dominant in two corner regions where secondary flows invading towards the sidewall are generated, but that ejections are dominant in the region where secondary flows ejecting towards the center of the channel are created. Also, conditional quadrant analyses reveal that the productions of Reynolds shear stresses and the patterns of secondary flows are determined by the directional tendencies of coherent structures.

측벽이 존재하는 개수로 난류흐름에 대한 DNS 자료를 사용하여 레이놀즈 전단응력 및 이차흐름의 생성메커니즘을 규명하였다. 측벽 부근에서 이차흐름의 양상을 보면, 상부 및 하부 모서리 부근에서는 측벽을 향해 침투되는 이차흐름이 형성된 반면, 그 외의 영역에서는 수로 중앙을 향해 분출하는 이차흐름이 형성된 것으로 나타났다. 측벽 부근에서 레이놀즈 전단응력의 분포를 산정하였으며, 고유구조와 연계하여 분석하였다. 사분면 해석에서 측벽을 향해 침투되는 이차흐름이 생성된 영역에서는 쓸기현상이 지배적인 반면, 측벽으로부터 분출되는 이차흐름이 형성된 영역에서는 분출현상이 지배적인 것으로 나타났다. 또한 조건부 사분면 해석을 통해 레이놀즈 전단응력의 생성 및 이차흐름의 양상이 지배적인 고유구조의 방향성에 의해 결정된다는 것을 확인하였다.

Keywords

References

  1. 정영훈, 최성욱(2005) 사각형 개수로 난류흐름의 직접수치모의, 대한토목학회논문집, 대한토목학회, 제25권 제2-B호, pp.115-122
  2. Broglia, R., Pascarelli, A., and Piomelli, U. (2003) Large-eddy simulation of ducts with a tree surface, Journal of Fluid Mechanics, Vol. 484, pp. 223-253 https://doi.org/10.1017/S0022112003004257
  3. Demuren, A.O. (1991) Calculation of turbulence-driven secondary motion in ducts with arbitrary cross-section, AIAA Journal, Vol. 29, No.4, pp. 531-537 https://doi.org/10.2514/3.10616
  4. Demuren, A.O. and Rodi, W. (1984) Calculation of turbulence-driven secondary motion in non-circular ducts, Journal of Fluid Mechanics, Vol. 140, pp. 189-222 https://doi.org/10.1017/S0022112084000574
  5. Gavrilakis, S. (1992) Numerical simulation of low-Reynolds-number turbulent flow through a straight square duct, Journal of Fluid Mechanics, Vol. 244, pp. 101-129 https://doi.org/10.1017/S0022112092002982
  6. Gessner, F.B. (1973) The origin of secondary flow in turbulent flow along a corner, Journal of Fluid Mechanics, Vol. 58, pp. 1-25 https://doi.org/10.1017/S0022112073002090
  7. Huser, A. and Biringen, S. (1993) Direct numerical simulation of turbulent flow in a square duct, Journal of Fluid Mechanics, Vol. 257, pp. 65-95 https://doi.org/10.1017/S002211209300299X
  8. Joung, Y., Choi, S.-U., and Choi, J.-I. (2006) Direct numerical simulation of turbulent flow in a square duct: an analysis of secondary flows, Journal of Engineering Mechanics, ASCE, accepted
  9. Launder, B.E. (1990) Phenomenological modelling: present and future- Whither Turbulence- Turbulence at the Crossroads (ed. J.L. Lumley), Lecture Notes in Physics, 357, 439, Springer
  10. Nezu, I. and Nakagawa, H. (1984) Cellular secondary currents in straight conduit, Journal of Hydraulic Engineering, ASCE, Vol. 110, No.2, pp. 173-193 https://doi.org/10.1061/(ASCE)0733-9429(1984)110:2(173)
  11. Pope, S.B. (2000) Turbulent flows, Cambridge University Press, Cambridge, UK