Rank Decision on Regional Environment Assessment Indicators Using Triangular Fuzzy Number - Focused on Ecosystem -

삼각퍼지수를 활용한 지역환경 평기지표 순위 결정 - 생태계를 중심으로 -

  • You, Ju-Han (Institute of Industrial Technology, Changwon National University) ;
  • Jung, Sung-Gwan (Dept. of Landscape Architecture, Kyungpook National University) ;
  • Park, Kyung-Hun (Dept. of Environment Engineering, Changwon National University) ;
  • Kim, Kyung-Tae (Dept. of Landscape Architecture, Kyungpook National University)
  • Received : 2006.08.04
  • Accepted : 2006.11.08
  • Published : 2006.12.30

Abstract

This study was carried out to offer the systematical and scientific method of regional environment conservation by deciding the rank using fuzzy theory, and try to find the methodology to accurately accomplished the regional environment assessment for sound land conservation. The results were as follows. To transform the Likert's scale granted to assessment indicators into the type of triangular fuzzy number (a, b, c), there was conversion to each minimum (a), median (b), and maximum (c) in applying membership function. We used the center of gravity and eigenvalue leading to the rank. In the sequential analysis of rank-based test of assessment indicators by triangular fuzzy number, the result proclaimed that ranking of the indicators was, in the biotic field, in the order of 'dominance', 'sociality', 'coverage' and in the abiotic one, 'soil pH', 'T-N', 'soil property', and in the qualitative one, 'impact rating class', 'hemeroby degree', 'land use pattern', and in the functional one, 'protection of water resource', 'offer of recreation', 'protection of soil erosion'. Therefore, there was a difference between subjective rank from human and the rank from triangular fuzzy number. In other words, the scientific rank decision would be not so much being subjective and biased as dealing with human thoughts mathematically by triangular fuzzy number.

Keywords

References

  1. 구자건, 이무춘, 2004, 국책사업 예비타당성조사 평가항목별 중요도 분석 -댐 개발사업을 중심으로- 환경영향평가, 13(6), 307-314
  2. 김상규, 류지협, 윤수호, 2000, 퍼지집합을 이용한 사면의 위험도 평가, 대한토목학회논문집, 20(3-C). 179-193
  3. 검창학, 강인석, 박서영, 2002 , 대형건설공사 위험인 자의 중요도 판정을 위한 퍼지 평가모형 적용성 연구, 대한토목학회논문집, 22(5-D), 923-933
  4. 김태일, 1999, 수리적 기법에 의한 평가모형체계의 기중치 부여방식에 관한 논의, 한국행정학보, 33(4), 243-258
  5. 나정화, 류연수, 사공정희, 2001, 평가지표에 의한 도시 비오톱의 가치평가 -생물종과 서식처 보전을 중심으로- 한국조경학회지, 29(1), 100-112
  6. 노정철, 2005 , 인바운드 활성회를 위한 문화관광정보시스템 가치평가: 퍼지수 적용, 관광연구, 19(1), 55-73
  7. 박창석, 전영옥, 조영구, 2002, 농촌어메니티에 기초한 농촌자원 중요도 평가 및 순위적 관계 분석, 국토계획, 37(6), 21-55
  8. 변우희, 변성희, 2001, 삼각퍼지수를 적용한 관광자원가치성 평가, 관광학연구, 25(3), 27-42
  9. 심준영, 김유일, 2006, 도시 자연공원의 중요도 평가, 한국조경학회지, 33(6), 12-21
  10. 유주한, 정성관, 박경훈, 오정학, 2005a, 퍼지이론 을이용한자연지원보전지역의 평가지표순 위 결정 -내셔널 트러스트 후보지 선정을 중 심으로- 한국조경학회지, 33(4), 97-107
  11. 유주한, 박경훈, 정성관, 2005b , 환경친화적 국토보전을 위한 자연생태계 평가요인 및 평가지 표의 중요도에 관한 연구, 환경영향평가, 14(4), 165-177
  12. 이석훈, 윤덕균, 2004, 삼각퍼지수와 어의척도를 이용한 서비스품질측정, 품질경영학회지, 32(3), 182-197
  13. 이용운, 황윤애, 이성우, 이병희, 최정욱, 2000 , 퍼지 의사결정법에 의한 주암호수질관리 전략평가, 대한환경공학회지, 22(4) 699-712
  14. 이용운, 권병택, 2006, 퍼지이론을 이용한 호소의 부영양화 등급 판정방법 개발, 환경영향평가, 15(1), 35-43
  15. 정성관, 유주한, 2003, 자연환경 보전을 위한 통합 평가모형 -내셔널 트러스트 후보지 선정을 중심으로- 환경영향평가, 12(2), 87-98
  16. 최태영, 박종화, 2004, 설악산국립공원내 산양 (Nemorhaedus Caudatus raddeanus)의 잠재 서식지 적합성 모형: 다기준평가기법 (MCE)과 퍼지집합(Fuzzy set)의 도입을 통 하여, 한국조경학회지, 32(4), 28-38
  17. Enea, M. and G. Salemi, 2001, Fuzzy approach to the environmental impact evaluation, Ecological Modelling, 135, 131-147
  18. Foody, G. M. , 1996, Fuzzy modelling of vegetation from remotely sensed imagery, Ecological Modeling, 85, 3-12 https://doi.org/10.1016/0304-3800(95)00012-7
  19. Klijn, K., A. Helias, and U. Haes., 1994, A hierarchical approach to ecosystem and its implications for ecological land classification, Landscape Ecology, 9(2),89-104 https://doi.org/10.1007/BF00124376
  20. Liu, M. and A. Samal, 2002, A fuzzy clustering approach to delineate agroecozones, Ecological Modelling, 149, 215-228 https://doi.org/10.1016/S0304-3800(01)00446-X
  21. Malone, C. R., 2000, Ecosystem management policies in state government of the USA, Landscape and Urban Planning, 48, 57-64 https://doi.org/10.1016/S0169-2046(00)00043-8
  22. Steinhardt, U., 1998, Applying the fuzzy set theory for medium and small scale landscape assessment, Landscape and Urban Planning, 41, 203-208 https://doi.org/10.1016/S0169-2046(98)00059-0
  23. Svoray, T., S. B-Y. Gancharski, Z. Henkin, and M. Gutman, 2004, Assessment of herbaceous plant habitats in waterconstrainedenvironments: predicting indirect effects with fuzzy logic, Ecological Modelling, 180, 537-556 https://doi.org/10.1016/j.ecolmodel.2004.06.037
  24. Wang, W-X., Y-M. Li, Z-Z. Li, and F. Yang, 2003, A fuzzy description on some ecological concept. Ecological Modelling, 169, 361-366 https://doi.org/10.1016/S0304-3800(03)00279-5
  25. Zadeh, L. A. , 1973, Outline of a new approach to the analysis of complex systems and decision processes, IEEE Trans, Systems, Mans, and Cybernetics, 3(1), 28-44