Positive-Type Photosensitive Polyimide Based on a Photobase Generator Containing Oxime-Urethane Groups as a Photosensitive Compound

  • Jang Young-Min (Department of Applied Chemistry and Polymer Science and Technology Research Center, Chonnam National University) ;
  • Seo Ji-Young (Department of Applied Chemistry and Polymer Science and Technology Research Center, Chonnam National University) ;
  • Chae Kyu-Ho (Department of Applied Chemistry and Polymer Science and Technology Research Center, Chonnam National University) ;
  • Yi Mi-Hye (Advanced Materials Division, Korea Research Institute of Chemical Technology)
  • 발행 : 2006.06.01

초록

The chemical structure of a semi-aromatic polyimide-I, which was prepared by the chemical imidization of cyclopentanetetracarboxylic dianhydride and 2,2-bis(4-aminophenyl)hexafluoropropane, was characterized by $^{13}C-NMR$ spectroscopy. The chemically imidized polyimide-I was used for the preparation of a photosensitive polyimide (PSPI) through the addition of benzophenone and benzophenone oxime hexamethylene diurethane (BOHD), a photobase generator containing oxime-urethane groups. The polyimide-I film containing benzophenone and BOHD was not soluble in 2.38 wt% tetrabutylammonium hydroxide solution in $H_2O$. However, it became soluble following irradiation with 310 nm UV light. A positive tone image with a resolution of $5{\mu}m$ was obtained with this PSPI, having sensitivity($D_c$) of $1.2J/cm^2$ and contrast(${\gamma}_p$) of 1.08. Thus, a polyimide, which is not intrinsically photosensitive, can become photosensitive through the addition of a photobase generator containing oxime-urethane groups as a photosensitive compound.

키워드

참고문헌

  1. G. Rabilloud, Polymers in Electronics, Technip, Paris, 2000, Chapter 1
  2. H. Ahne, R. Rubner, Photosensitive Polyimides: Fundamentals and Applications, K. Horie, and T. Yamashita, Eds., Technomic, Lancaster, PA, 1995, p. 13
  3. C. Feger and H. Franke, Photosensitive Polyimides: Fundamentals and Applications, K. Horie, and T. Yamashita, Eds., Technomic, Lancaster, PA, 1995, Chapter 24
  4. W. S. Choi, Y. -Y. Noh, and K. H. Chae, Adv. Mater., 17, 833 (2005) https://doi.org/10.1002/adma.200400841
  5. S. K. Lee, B. -J. Jung, T. Ahn, I. Song, and H. -K. Shim, Macromolecules, 36, 9252 (2003) https://doi.org/10.1021/ma034928y
  6. E. A. Chandross, F. M. Houlihan, A. Partovi, X. S-W. Quan, and G. Venugopal, US Patent 6,045,977 (2000)
  7. D. R. Mckean, G. M. Wallraff, W. Volksen, N. P. Hacker, M. I. Sanchez, and J. W. Labadie, Proc. ACS Div. Polym. Mater. Sci. Eng., 66, 237 (1992)
  8. D. R. Mckean, T. Briffaud, W. Volksen, N. P. Hacker, and J. W. Labadie, Polym. Prepr., (Am. Chem. Soc. Div. Polym. Chem.), 35, 387 (1994)
  9. D. R. Mckean, G. M. Wallraff, W. Volksen, N. P. Hacker, M. I. Sanchez, and J. W. Labadie, Polymers for Electronics: Resists and Dielectrics, ACS Symposium Series 537, L. F. Thompson, C. G. Willson, and S. Tagawa, Eds., ACS, Washington, D. C., 1994, Chapter 28, pp. 417-427
  10. J. M. J. Frechet, J. F. Cameron, C. M. Chung, S. A. Haque, and C. G. Willson, Polym. Bull., 30, 369 (1993) https://doi.org/10.1007/BF00338468
  11. A. Mochizuki, T. Teranishi, and M. Ueda, Macromolecules, 28, 365 (1995) https://doi.org/10.1021/ma00105a051
  12. K. H. Chae, Macromol. Rapid Commun., 19, 1 (1998) https://doi.org/10.1002/(SICI)1521-3927(19980101)19:1<1::AID-MARC1>3.0.CO;2-6
  13. K. H. Chae and J. H. Park, Macromol. Res., 12, 352 (2004) https://doi.org/10.1007/BF03218411
  14. K. H. Chae and K. H. Sung, J. Polym. Sci., Part A: Polym. Chem., 42, 975 (2004) https://doi.org/10.1002/pola.11032
  15. K. H. Chae and H. J. Chang, J. Polym. Sci.; Part A: Polym. Chem., 40, 1200 (2002) https://doi.org/10.1002/pola.10200
  16. K. H. Chae, J. C. Gwark, and T. Chang, Macromol. Rapid Commun., 21, 1007 (2000) https://doi.org/10.1002/1521-3927(20001001)21:15<1007::AID-MARC1007>3.0.CO;2-#
  17. E. Y. Chung, S. M. Choi, H. B. Sim, K. K. Kim, D. S. Kim, K. J. Kim, and M. H. Yi, Polym. Adv. Tech., 16, 19 (2005) https://doi.org/10.1002/pat.542