CURRENT TRENDS IN IONIZING RADIATION DETECTION

  • Wehe David K. (Department of Nuclear Engineering and Radiological Sciences University of Michigan)
  • Published : 2006.06.01

Abstract

Ionizing radiation is a both a natural and man-made phenomena that plays a major role in contemporary applications. The detection of this radiation has evolved over the past several decades from simple observations to precise measurements in space, time, and energy, even in harsh environmental conditions. Tn this paper, we present a snapshot of the current state-of-the-art in radiation measurement technology, highlighting the major applications and detector developments.

Keywords

References

  1. N.A. Pavel, Particle detectors for biomedical applications: demands and trends, Nuclear Instruments and Methods in Physics Research A 478 (2002) 1-12 https://doi.org/10.1016/S0168-9002(01)01709-0
  2. Philip P. Allport, Workshop summary: 'From microns to Mpc', Nuclear Instruments and Methods in Physics Research A 549 (2005) 210-216 (Vertex detectors). https://doi.org/10.1016/j.nima.2005.04.054
  3. M. Turala, Silicon tracking detectors-historical overview, Nuclear Instruments and Methods in Physics Research A 541 (2005) 1?14 https://doi.org/10.1016/j.nima.2005.01.032
  4. M. Wiescher, Experimental Challenges in Nuclear Astrophysics, Nuclear Physics A 751 (2005) 285c?300c https://doi.org/10.1016/j.nuclphysa.2005.02.110
  5. Stephen R. Gottesman and E. E. Fenimore, New Family of Binary Arrays for Coded Aperture Imaging, Applied Optics Vol. 28, No. 20, 15 October 1989
  6. E. E. Fenimore and T. M. Cannon, Coded aperture imaging with uniformly redundant arrays (ET), Appl. Opt. 17, 337-(1978) https://doi.org/10.1364/AO.17.000337
  7. J. Pruet et al., Neutron and photon transport in seagoing cargo containers, J. Appl. Phys. 97, 094908 (2005) https://doi.org/10.1063/1.1887835
  8. C. E. Moss et al., Comparison of Active Interrogation Techniques, paper N14-14, 2005 IEEE Nuclear Science Symposium Conference Record
  9. M.J. Weber, Scintillation: mechanisms and new crystals, Nuclear Instruments and Methods in Physics Research A 527 (2004) 9?14 https://doi.org/10.1016/j.nima.2004.03.009
  10. Glenn C. Tyrrell, Phosphors and scintillators in radiation imaging detectors, Nuclear Instruments and Methods in Physics Research A 546 (2005) 180?187 https://doi.org/10.1016/j.nima.2005.03.103
  11. S.E. Derenzo, M.J. Weber, E. Bourret-Courchesne, M.K. Klintenberg, The quest for the ideal inorganic scintillator, Nuclear Instruments and Methods in Physics Research A 505 (2003) 111?117 https://doi.org/10.1016/S0168-9002(03)01031-3
  12. K.S. Shah, J. Glodo, M. Klugerman, L. Cirignano S.E. Derenzo, M.J. Weber, $LaCI_3$:Ce scintillator for g-ray detection, Nuclear Instruments and Methods in Physics Research A 505 (2003) 76?81 https://doi.org/10.1016/S0168-9002(03)01024-6
  13. R. Pani, R. Pellegrini, M.N. Cinti, C. Trotta, P. Bennati, F. Cusanno, F. Garibaldi, Imaging detector designs based on flat panel PMT, Nuclear Instruments and Methods in Physics Research A 527 (2004) 54?57 https://doi.org/10.1016/j.nima.2004.03.037
  14. J.S. Lapington, Microchannel plate image readouts: in search of high resolution and count rate, Nuclear Instruments and Methods in Physics Research A 513 (2003) 132?135 https://doi.org/10.1016/j.nima.2003.08.017
  15. K. S. Shah, R. Farrell, R. Grazioso, R. Myers, and L. Cirignano, Large-Area APDs and Monolithic APD Arrays, IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 48, NO. 6, DECEMBER 2001 https://doi.org/10.1109/23.983267
  16. R. Satoa, , J. Kataokaa, Y. Kanaia, Y. Ishikawab, N. Kawabatab, T. Ikagawaa, T. Saitoa, Y. Kuramotoa, N. Kawai, Development of 2 cm-square Hamamatsu avalanche photodiodes for high-resolution X-rays and ${\gamma}$-rays detection, Nuclear Instruments and Methods in Physics Research A 556 (2006) 535?542 https://doi.org/10.1016/j.nima.2005.11.050
  17. Emilio Gatti, Pavel Rehak, Review of semiconductor drift detectors, Nuclear Instruments and Methods in Physics Research A 541 (2005) 47?60 https://doi.org/10.1016/j.nima.2005.01.037
  18. C. D'Ambrosio, H. Leutz, Hybrid photon detectors, Nuclear Instruments and Methods in Physics Research A 501 (2003) 463?498 https://doi.org/10.1016/S0168-9002(03)00431-5
  19. Pierre Magnan, Detection of visible photons in CCD and CMOS: A comparative view, Nuclear Instruments and Methods in Physics Research A 504 (2003) 199?212 https://doi.org/10.1016/S0168-9002(03)00792-7
  20. R. Turchetta et al., CMOS Monolithic Active Pixel Sensors (MAPS): New 'eyes' for science, Nuclear Instruments and Methods in Physics Research A 560 (2006) 139-142 https://doi.org/10.1016/j.nima.2005.11.241
  21. W. Neeser et al., DEPFET- a pixel device with integrated amplification, Nuclear Instruments and Methods in Physics Research A 477 (2002) 129?136 https://doi.org/10.1016/S0168-9002(01)01886-1
  22. Dario Natali, Marco Sampietro, Detectors based on organic materials: status and perspectives, Nuclear Instruments and Methods in Physics Research A 512 (2003) 419?426 https://doi.org/10.1016/S0168-9002(03)01921-1
  23. P. Buzhan, et al., Silicon photomultiplier and its possible applications, Nuclear Instruments and Methods in Physics Research A 504 (2003) 48?52 https://doi.org/10.1016/S0168-9002(03)00749-6
  24. Roger Fourme, Position-sensitive gas detectors: MWPCs and their gifted descendants, Nuclear Instruments and Methods in Physics Research A 392 (1997) 1-11 https://doi.org/10.1016/S0168-9002(97)00284-2
  25. A. Oed, Properties of micro-strip gas chambers (MSGC) and recent developments, Nuclear Instruments and Methods in Physics Research A 367 (1995) 34-40 https://doi.org/10.1016/0168-9002(95)00657-5
  26. R. Bellazzini and G. Spandre, The MicroGap Chamber: a new detector for the next generation of high energy, high rate experiments, Nuclear Instruments and Methods in Physics Research A 368 (1995) 259-264 https://doi.org/10.1016/0168-9002(95)01273-7
  27. Archana Sharma, Detection of single electrons emitted by internal photocathodes with the Gas Electron Multiplier (GEM), Nuclear Instruments and Methods in Physics Research A 462 (2001) 603?606 https://doi.org/10.1016/S0168-9002(00)01310-3
  28. Pansky, A. Breskin, R . Chechik and G. Malamud, Detection of X-ray fluorescence of light elements by electron counting in a low-pressure gaseous electron multiplier, Nuclear Instruments and Methods in Physics Research A330 (1993) 150-157 https://doi.org/10.1016/0168-9002(93)91317-G
  29. D.H. Beddingfield, A. Beyerle, P.A. Russo, K. Ianakiev, D.T. Vo, V. Dmitrenko, High-pressure xenon ion chambers for gamma-ray spectroscopy in nuclear safeguards, Nuclear Instruments and Methods in Physics Research A 505 (2003) 474?477 https://doi.org/10.1016/S0168-9002(03)01124-0
  30. Pat Sangsingkeow, et al., Advances in germanium detector technology, Nuclear Instruments and Methods in Physics Research A505 (2003) 183-186 https://doi.org/10.1016/S0168-9002(03)01047-7
  31. V. RADEKA, SEMICONDUCTOR POSITION-SENSITIVE DETECTORS, Nuclear Instruments and Methods in Physics Research 226 (1984) 209-218 https://doi.org/10.1016/0168-9002(84)90193-1
  32. Alan Owens, A. Peacock, Compound semiconductor radiation detectors, Nuclear Instruments and Methods in Physics Research A 531 (2004) 18?37 https://doi.org/10.1016/j.nima.2004.05.071
  33. H. H. Barrett, J. D. Eskin, and H. B. Barber, Charge Transport in Arrays of Semiconductor Gamma-Ray Detectors, Phys. Rev. Ltrs, Vol. 75, No. 1, 3 July 1995, p. 156 https://doi.org/10.1103/PhysRevLett.75.156
  34. G. Chardin, Low temperature detectors: summary and perspectives, Nuclear Instruments and Methods in Physics Research A 370 (1996) 279-284 https://doi.org/10.1016/0168-9002(95)01286-9
  35. Stephan Friedrich, Rolf Fliegauf, Matthias Frank, Markus Veldkamp, Simon Labov, Burkhard Beckhoff, Gerhard Ulm, The spectral response of superconducting tunnel junction X-ray detectors, Nuclear Instruments and Methods in Physics Research A 551 (2005) 35?45 https://doi.org/10.1016/j.nima.2005.07.041
  36. http://www-phys.llnl.gov/cryo/projects/Good.gif