Design and Implementation of Low-Power DCT Architecture by Minimizing Switching Activity

스위칭 엑티비티를 최소화한 저전력 DCT 아키텍쳐 구현

  • 김산 (연세대학교 전기전자공학과 프로세서연구실) ;
  • 박종수 (연세대학교 전기전자공학과 프로세서연구실) ;
  • 이용주 (연세대학교 전기전자공학과 프로세서연구실) ;
  • 이용석 (연세대학교 전기전자공학과 프로세서연구실)
  • Published : 2006.06.01

Abstract

Low-power design is one of the most important challenges encountered in maximizing battery life in portable devices as well as saving energy during system operation. In this paper we propose a low-power DCT (Discrete Cosine Transform) architecture using a modified Computation Sharing Multiplication (CSHM). The overall rate of Power consumption is reduced during DCT: the proposed architecture does not perform arithmetic operations on unnecessary bits during the Computation Sharing Multiplication calculations. Experimental results show that it is possible to reduce power dissipation up to about $7\sim8%$ without compromising the final DCT results. The proposed low-power DCT architecture can be applied to consumer electronics as well as portable multimedia systems requiring high throughput and low-power.

저전력 설계는 시스템의 소모전력을 줄임으로써 에너지 절약과 함께 휴대용 장치의 배터리 수명을 극대화시킴에 있어 직면한 가장 중요한 문제이다. 본 논문에서는 개량형 CSHM을 이용하여 저전력 DCT 구조를 제안하였다. 제안된 구조는 Computation Sharing Multiplication 연산 과정 중 불필요한 비트에 대한 연산을 수행하지 않는다. 실험 결과, 기존의 DCT 알고리즘과 동일한 연산 결과를 보이면서도 최대 약 9%의 소모전력이 감소하였다. 따라서 제안된 저전력 DCT 구조는 저전력 및 고성능으로 DCT 알고리즘을 처리해야하는 휴대용 멀티미디어 시스템에 적용이 가능하다.

Keywords

References

  1. N. Ahmed, T. Natarajan and K. R. Rao, 'Discrete cosine transform,' IEEE Trans. on Computer, vol. C-23 pp. 90-93, 1974 https://doi.org/10.1109/T-C.1974.223784
  2. S. A. White, 'Applications of distributed arithmetic to digital signal processing: A tutorial review,' IEEE ASSP Magazine, pp. 4-19, July 1989
  3. K. K. Parhi, and D. G. Messerschmitt, 'Static Rate Optimal Scheduling of Iterative Data Flow Programs via Optimum Unfolding,' IEEE Trans. On Computers, pp. 178-195 Vol. 40(2), February 1991 https://doi.org/10.1109/12.73588
  4. K. K. Parhi, 'VLSI Digital Signal Processing Systems: Design and Implementation,' Wiley, NY 1999
  5. Liu, K.J.R. Jie Chen, 'Algorithm-Based LowPower and High Performance Multimedia Signal Processing,' Proc. of the IEEE, pp. 1156-1158 Vol. 86, 1998
  6. Yi-Wen Wu, Chen, O.T.-C and Ruey-Liang Ma, 'A low-power digital signal processor core by minimizing inter-data switching activities,' Circuits and Systems, Proc. of the 44th IEEE 2001 Midwest Symposium on, Volume: 1, 2001 pp. 172-175 vol.1
  7. B. G. Lee, 'A New Algorithm To Compute The Discrete Cosine Transform,' IEEE Trans. Acoustics, Speech, and Signal Processing, vol. ASSP-32, no. 6, pp. 1243-1245, 1984
  8. H. S. Hou, 'A Fast Recursive Algorithm for Computing The Discrete Cosine Transform,' IEEE Trans. Acoustics, Speech, and Signal Processing, vol. ASSP-25, no. 10, pp. 1455-1461, 1987
  9. K. R. Rao and P. Yip, 'Discrete Cosine Transform, Algorithm,' Advantages, Applications, Academic Press, 1990
  10. F. A. Kamangar and K. R. Rao, 'Fast algorithms for the 2-D discrete cosine transform,' IEEE Trans. Acoustics, Speech, and Signal Processing, vol.37, pp.1415-1424, Sept. 1989 https://doi.org/10.1109/29.31295
  11. M. A. Haque, 'A two-dimensional fast cosine transform,' IEEE Trans. Acoustics, Speech, and Signal Processing, vol. ASSP-33, pp. 1532-1539, 1985
  12. H. R. Wu and F. J. Paoloni, 'A two-dimensional fast cosine transform algorithm - A structural approach,' Proceedings International conference Image Processing(Singapore), pp. 50-54, Sept. 1989
  13. H. R. Wu and F. J. Paoloni, 'A two-dimensional fast cosine transform algorithm based on Hou's approach,' IEEE Trans. on Signal Processing, vol. 39, no. 2, Feb. 1991
  14. W. H. Chen, Smith. C. and Fralick. S., 'A fast computational algorithm for the discrete cosine transform', IEEE Trans. Commun. vol. COM-25, no. 9, pp. 1004-1009, Sep. 1977
  15. A. Chandrakasan, R. Brodersen, 'Low power digital CMOS design,' Kluwer Academic Publishers, 1995
  16. 조준동, 임세진, '소자의 스위칭 동작 최소화를 통한 디지털 회로 저전력 상위 레벨 최적화에 대한 연구,' 서울대 반도체 공동연구소, 10월, 1997년
  17. 조준동, '알고리즘 및 아키텍처 수준 저전력 설계자동화,' 전자공학회 CAD 기술 특집, 12월, 1997
  18. J. Park, H. Choo, Muhammad, K. and Roy, K., 'Non adaptive and Adaptive Filter implementation based on sharing multiplication', IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP), Istanbul, Turkey, June 2000
  19. K. Muhammad, 'Algorithmic and Architectural Techniques for Low Power Digital Signal Processing,' Ph. D. thesis, Purdue University, 1999
  20. Peter M Kogge, 'The Architecture of Pipelined Computers,' New York :Hemisphere, 1981
  21. 경종민, 박인철 외 공저, '고성능 마이크로프로세서 구조 및 설계 방법,' 대영사, pp.316338
  22. 이용석, '고성능 마이크로 프로세서 곱셈기의 구조(High Performance Microprocessor Multiplier),' 비디오 및 온라인 강좌 시리즈, http://mpu.yonsei.ac.kr
  23. Jongsu Park, San Kim and Yong-Surk Lee, 'A Low-Power Booth Multiplier Using Novel Data Partition Method,' 4th IEEE Asia-Pacific Conference on Advanced System Integrated Circuits, August 4, 2004
  24. Jongsun Park, Muhammad, K., Roy, K., 'High-performance FIR filter design based on sharing multiplication,' Very Large Scale Integration Systems, IEEE Transactions on, 11, 2, 2003 pp. 244-253 https://doi.org/10.1109/TVLSI.2002.800529