QAM 변조방식을 갖는 선형 직교 시공간 블록 부호의 준정지 레일리 페이딩 채널에서의 비트 오율 성능 분석

BER Performance Analysis of Linear Orthogonal Space-Time Block Codes with Quadrature Amplitude Modulation in Quasi Static Rayleigh Fading Channel

  • 김상효 (삼성전자) ;
  • 양재동 (서울대학교 전기컴퓨터공학부 부호 및 신호설계 연구실) ;
  • 노종선 (서울대학교 전기컴퓨터공학부 부호 및 신호설계 연구실)
  • 발행 : 2006.06.01

초록

본 논문에서는 Alamouti, Tarokh, Su와 Xia 등에 의해 도입된 직교 시공간 부호를 포함한 임의의 선형 직교 시공간 블록 부호에 대해, 준정지 레일리 페이딩 채널에서의 정확한 비트 오율 성능을 분석한다. 먼저 1차원 심볼 오류 함순(one-dimensional symbol error function, ODSEF)를 정의한다. 이것은 직교 시공간 블록 부호의 정확한 쌍 오류 확률(pairwise error probability)에 의하여 얻어진다. ODSEF와 Cho 와 Yoon의 QAM에 대한 비트 오율 표현을 이용하여, 직교 시공간 블록 부호에 대한 일반적인 표현을 구하고, 이를 이용하여, 선형 직교 시공간 블록 부호의 정확한 폐형의 비트 오율을 구한다.

In this paper, we first define one-dimensional component symbol error function (ODSEF) from the exact expression of the pairwise error probability of orthogonal space-time block codes (OSTBC). Using the ODSEF and the general bit error probability (BEP) expression for quadrature amplitude modulation (QAM) introduced by Cho and Yoon, the exact closed form expressions for the BEP of linear OSTBCs with QAM in slow-varying Rayleigh fading channel are derived.

키워드

참고문헌

  1. S. M Alamouti, 'A simple transmitter diversity scheme for wireless corrnmmications,' IEEE J. Select. Areas Commun, vol. 16, no. 8 pp. 1451-1458, Nov. 1998 https://doi.org/10.1109/49.730453
  2. M. K. Byun, Performance Analysis of Space-Time Coded Modulation Systems, Ph.D. Dissertation, Seoul National University, Feb. 2001
  3. K. Cho and D. Yoon, 'On the general BER expression of one- and two-dimensional amplitude modulation,' IEEE Trans. Commun., vol. 50, no. 7, pp. 1074-1080, July 2002 https://doi.org/10.1109/TCOMM.2002.800818
  4. A. R. Hammons and H El Gamal, 'On the theory of space-time codes for PSK modulation,' IEEE Trans. Inform. Theory, vol. 46, no. 2, Mar. 2000
  5. B. M. Hochwald and T. L. Marzetta, 'Unitary space-time modulation for multiple-antenna communications in Rayleigh flat fading,' IEEE Trans. Inform. Theory, vol. 46, no. 2, pp.543-564, Mar. 2000 https://doi.org/10.1109/18.825818
  6. S.-H Kim, I.S. Kang, and J.-S. No, 'Symbol error probability of orthogonal space-time block codes and QAM in Rayleigh fading channel,' IEICE Trans. Commun., vol. 87-B, no. 1, Jan. 2004
  7. X. Li, T. Luo, G. Yue, and C. Yin, 'A squaring method to simplify the decoding of orthogonal space-time block codes,' IEEE Trans. Commun., vol. 49, no. 10, pp.1700-1703, Oct. 2001 https://doi.org/10.1109/26.957388
  8. X.-B. Liang, 'A high-rate orthogonal space-time block code,' IEEE Commun. Lett., vol. 7, no. 5, pp. 222-223, May 2003 https://doi.org/10.1109/LCOMM.2003.812180
  9. H. Lu, Y. Wang, P. V. Kumar, and K. M. Chugg, 'Remarks on space-time codes including a new lower bound and an improved code,' IEEE Trans. Inform: Theory, vol. 49, no. 10, pp. 2752-2757, Oct. 2003 https://doi.org/10.1109/TIT.2003.817475
  10. M. K. Simon, 'Evaluation of average bit error probability for space-time coding based on a simpler exact evaluation of pairwise error probability,' J. Commun; and Networks, vol. 3, no. 3, pp. 257-263, Sept. 2001
  11. M. K. Simon and M. S. Alouini, Digital Communication over Fading Channels: A Unified Approach to Performance Analysis, New York, NY: John Wiley & Sons, Inc., Aug. 2000
  12. W. Su and X. G. Xia, 'Two generalized complex orthogonal space-time block codes of rates 7/11 and 3/5 for 5 and 6 transmit antennas,' IEEE Trans. Inform. Theory, vol. 49, no 1, pp. 313-316, Jan. 2003 https://doi.org/10.1109/TIT.2002.806123
  13. G. Taricco and E. Biglieri, 'Exact pairwise error probability of space-time codes,' IEEE Trans. Inform: Theory, vol. 48, pp. 510-513, Feb. 2002 https://doi.org/10.1109/18.979326
  14. V. Tarokh, N. Seshachi, and A. R. Calderbank, 'Space-time codes for high data rate wireless cormnunications: PeIformance analysis and code construction,' IEEE Trans. Inform. Theory, vol. 44, pp. 744-765, Mar. 1998 https://doi.org/10.1109/18.661517
  15. V. Tarokh, H. Jafarkhani, and A. R. Calderbank, 'Space-time block codes from orthogonal designs,' IEEE Trans. Irform: Theory, vol. 45, pp. 1456-1467, Jul. 1999 https://doi.org/10.1109/18.771146