References
- Delneri, D., C. C. Tomlin, J. L. Wixon, A. Hunter, M. Sefton, E. J. Louis, and S. G. Oliver. 2000. Exploring redundancy in the yeast genome: An improved strategy for use of the cre-loxP system. Gene 252: 127-135 https://doi.org/10.1016/S0378-1119(00)00217-1
- Gray, M. and S. M. Honigberg. 2001. Effect of chromosomal locus, GC content and length of homology on PCR-mediated target gene replacement in Saccharomyces cerevisiae. Nucleic Acids Res. 29: 5156-5162 https://doi.org/10.1093/nar/29.24.5156
- Kang, H. A., W. K. Kang, S. M. Go, A. Rezaee, S. H. Krishna, S. K. Rhee, and J. Y. Kim. 2005. Characterization of Saccharomyces cerevisiae gallD and gallD hxk2D mutants expressing recombinant proteins from the GAL1 promoter. Biotechnol. Bioeng. 89: 619-629 https://doi.org/10.1002/bit.20240
- Kim, H. E., R. Qin, and K. S. Chae. 2005. Increased production of exoinulinase in Saccharomyces cerevisiae by expressing the Kluyveromyces marxianus INU1 gene under the control of the INU1 promoter. J. Microbiol. Biotechnol. 15: 447-450
- Lorenz, M. C., R. S. Muir, E. Lim, J. McElver, S. C. Webber, and J. Heitman. Gene disruption with PCR products in Saccharomyces cerevisiae. Gene 158: 113-117 https://doi.org/10.1016/0378-1119(95)00144-U
- McNabb, D. S., S. M. Park, and L. Guarente. 1997. Cassette for the generation of sequential gene disruptions in the yeast Schizosaccharomyces pombe. Biotechniques 22: 1134-1139
- Nikawa, J. I. and M. Kawabata. 1998. PCR- and ligationmediated synthesis of marker cassettes with long flanking homology regions for gene disruption in Saccharomyces cerevisiae. Nucleic Acids Res. 26: 860-861 https://doi.org/10.1093/nar/26.3.860
- Paik, S. K., H. S. Yun, H. Iwahashi, K. Obuchi, and I. Y. Jin. 2005. Effect of trehalose on stabilization of cellular components and critical targets against heat shock in Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 15: 965-970
- Reid, R. J. D., I. Sunjevaric, M. Kedacche, and R. Rothstein. 2002. Efficient PCR-based gene disruption in Saccharomyces cerevisiae strains using intergenic primers. Yeast 19: 319-328 https://doi.org/10.1002/yea.817
- Ro, H. S., M. S. Lee, M. S. Hham, H. S. Bae, and B. H. Chung. 2005. Production of active carboxypeptidase Y of Saccharomyces cerevisiae secreted from methylotrophic yeast Pichia pastoris. J. Microbiol. Biotechnol. 15: 202-205
- Schiestl, R. H. and R. D. Gietz. 1989. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr. Genet. 16: 339-346 https://doi.org/10.1007/BF00340712
- Sun, Y. H., S. K. Paik, I. S. Kim, I. Jin, and H. Y. Sohn. 2004. Direct evidence of intracellular alkalinization in Saccharomyces cerevisiae KNU5377 exposed to inorganic sulfuric acid. J. Microbiol. Biotechnol. 14: 243-249
- Steensma, H. Y. and J. J. M. T. Linde. 2001. Plasmids with the Cre-recombinase and the dominant nat marker, suitable for use in prototrophic strains of Saccharomyces cerevisiae and Kluyveromyces lactis. Yeast 18: 469-472 https://doi.org/10.1002/yea.696
- Toh-e, A. 1995. Construction of a marker gene cassette which is repeatedly usable for gene disruption in yeast. Curr. Genet. 27: 292-297
- Walker, M., A. Vystavelova, S. Pedler, J. Elington, and V. Jiranek. 2005. PCR-based gene disruption and recombinatory marker excision to produce modified industrial Saccharomyces cerevisiae without added sequences. J. Microbiol. Method. 63: 193-204 https://doi.org/10.1016/j.mimet.2005.03.015