Development of Reusable Split URA3-Marked Knockout Vectors for Saccharomyces cerevisiae

  • Lee Tae-Hee (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University) ;
  • Kim Myoung-Dong (School of Biotechnology and Bioengineering, Kangwon National University) ;
  • Seo Jin-Ho (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University)
  • Published : 2006.06.01

Abstract

Two knockout vectors, in which the truncated Kluyveromyces lactis URAS gene is flanked by a direct repeat, were developed for Saccharomyces cerevisiae. Each vector was designed to harbor 5'- and 3'-end homology regions for integration. Two knockout fragments were devised to integrate into the correct locus in a complementary manner to disrupt a gene of interest and. concomitantly to make functional Kl URA3 for transfomant selection. The use of dual complementary knockout cassettes was expected to dramatically reduce integration into unwanted loci in the genome. The knockout system developed in this study was successfully used for disruption of the GAL1 gene in S. cerevisiae.

Keywords

References

  1. Delneri, D., C. C. Tomlin, J. L. Wixon, A. Hunter, M. Sefton, E. J. Louis, and S. G. Oliver. 2000. Exploring redundancy in the yeast genome: An improved strategy for use of the cre-loxP system. Gene 252: 127-135 https://doi.org/10.1016/S0378-1119(00)00217-1
  2. Gray, M. and S. M. Honigberg. 2001. Effect of chromosomal locus, GC content and length of homology on PCR-mediated target gene replacement in Saccharomyces cerevisiae. Nucleic Acids Res. 29: 5156-5162 https://doi.org/10.1093/nar/29.24.5156
  3. Kang, H. A., W. K. Kang, S. M. Go, A. Rezaee, S. H. Krishna, S. K. Rhee, and J. Y. Kim. 2005. Characterization of Saccharomyces cerevisiae gallD and gallD hxk2D mutants expressing recombinant proteins from the GAL1 promoter. Biotechnol. Bioeng. 89: 619-629 https://doi.org/10.1002/bit.20240
  4. Kim, H. E., R. Qin, and K. S. Chae. 2005. Increased production of exoinulinase in Saccharomyces cerevisiae by expressing the Kluyveromyces marxianus INU1 gene under the control of the INU1 promoter. J. Microbiol. Biotechnol. 15: 447-450
  5. Lorenz, M. C., R. S. Muir, E. Lim, J. McElver, S. C. Webber, and J. Heitman. Gene disruption with PCR products in Saccharomyces cerevisiae. Gene 158: 113-117 https://doi.org/10.1016/0378-1119(95)00144-U
  6. McNabb, D. S., S. M. Park, and L. Guarente. 1997. Cassette for the generation of sequential gene disruptions in the yeast Schizosaccharomyces pombe. Biotechniques 22: 1134-1139
  7. Nikawa, J. I. and M. Kawabata. 1998. PCR- and ligationmediated synthesis of marker cassettes with long flanking homology regions for gene disruption in Saccharomyces cerevisiae. Nucleic Acids Res. 26: 860-861 https://doi.org/10.1093/nar/26.3.860
  8. Paik, S. K., H. S. Yun, H. Iwahashi, K. Obuchi, and I. Y. Jin. 2005. Effect of trehalose on stabilization of cellular components and critical targets against heat shock in Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 15: 965-970
  9. Reid, R. J. D., I. Sunjevaric, M. Kedacche, and R. Rothstein. 2002. Efficient PCR-based gene disruption in Saccharomyces cerevisiae strains using intergenic primers. Yeast 19: 319-328 https://doi.org/10.1002/yea.817
  10. Ro, H. S., M. S. Lee, M. S. Hham, H. S. Bae, and B. H. Chung. 2005. Production of active carboxypeptidase Y of Saccharomyces cerevisiae secreted from methylotrophic yeast Pichia pastoris. J. Microbiol. Biotechnol. 15: 202-205
  11. Schiestl, R. H. and R. D. Gietz. 1989. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr. Genet. 16: 339-346 https://doi.org/10.1007/BF00340712
  12. Sun, Y. H., S. K. Paik, I. S. Kim, I. Jin, and H. Y. Sohn. 2004. Direct evidence of intracellular alkalinization in Saccharomyces cerevisiae KNU5377 exposed to inorganic sulfuric acid. J. Microbiol. Biotechnol. 14: 243-249
  13. Steensma, H. Y. and J. J. M. T. Linde. 2001. Plasmids with the Cre-recombinase and the dominant nat marker, suitable for use in prototrophic strains of Saccharomyces cerevisiae and Kluyveromyces lactis. Yeast 18: 469-472 https://doi.org/10.1002/yea.696
  14. Toh-e, A. 1995. Construction of a marker gene cassette which is repeatedly usable for gene disruption in yeast. Curr. Genet. 27: 292-297
  15. Walker, M., A. Vystavelova, S. Pedler, J. Elington, and V. Jiranek. 2005. PCR-based gene disruption and recombinatory marker excision to produce modified industrial Saccharomyces cerevisiae without added sequences. J. Microbiol. Method. 63: 193-204 https://doi.org/10.1016/j.mimet.2005.03.015