Function of Cell-Bound and Released Exopolysaccharides Produced by Lactobacillus rhamnosus ATCC 9595

  • Kim Ji-Uk (Division of Food Science, Korea University) ;
  • Kim Young-Hoon (Division of Food Science, Korea University) ;
  • Han Kyoung-Sik (Division of Food Science, Korea University) ;
  • Oh Se-Jong (Institute of Agricultural Science & Technology, Department of Animal Science, Chonnam National University) ;
  • Whang Kwang-Youn (Bioscience & Technology, Korea University) ;
  • Kim Jai-Neung (Department of Packaging, Yonsei University) ;
  • Kim Sae-Hun (Division of Food Science, Korea University)
  • Published : 2006.06.01

Abstract

The physiological characteristics and function of the exopolysaccharide (EPS) produced by Lactobacillus rhamnosus ATCC 9595 were determined. The total quantity of EPS was rapidly increased to 496$\pm$20 mg/l during the exponential phase, and then maintained steadily during the stationary phase. During the exponential phase (18 h), the total EPS consisted of 61% cell-bound EPS (cb-EPS) and 39% released EPS (r-EPS), whereas the relative proportion of EPS during the stationary phase (48 h) was convered to 23% cb-EPS and 77% r-EPS. On gel permeation chromatography, cb-EPS was fractionated as a single peak of 8.6$\times10^6$ Da, whereas r-EPS was fractionated as two peaks with average molecular weights of 4.3$\times$10$^4$ and 8.6$\times10^6$ Da. Interestingly, both EPS species exhibited anticancer properties and cholera toxin-binding activities. Our results suggest that the EPS generated by L. rhamnosus ATCC 9595 might be suitable for use as a functional food or food supplement.

Keywords

References

  1. Baricault, L., G. Denariaz, J. J. Houri, C. Bouley, C. Sapin, and G. Trugnan. 1995. Use of HT-29, a cultured human colon cancer cell line, to study the effect of fermented milks on colon cancer cell growth and differentiation. Carcinogenesis 16: 245-252 https://doi.org/10.1093/carcin/16.2.245
  2. Broadbent, J. R., D. J. Mcmahon, D. L. Welker, C. J. Oberg, and S. Moineau. 2003. Biochemistry, genetics, and applications of exopolysaccharide production in Streptococcus thermophilus: A review. J. Dairy Sci. 86: 407-423 https://doi.org/10.3168/jds.S0022-0302(03)73619-4
  3. Cerning, J. 1990. Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol. Rev. 87: 113-130 https://doi.org/10.1111/j.1574-6968.1990.tb04883.x
  4. Cerning, J., C. M. G. C. Renard, J. F. Thibault, C. Bouillanne, M. Landon, M. Desmazeaud, and L. Topisirovic. 1994. Carbon source requirements for exopolysaccharides production by Lactobacillus casei CG11 and partial structure analysis of the polymer. Appl. Environ. Microbiol. 60: 3914-3919
  5. Degeest, B. and L. De Vuyst. 2000. Correlation of activities of the enzymes alpha-phosphoglucomutase, UDP-galactose 4-epimerase, and UDP-glucose pyrophosphorylase with exopolysaccharide biosynthesis by Streptococcus thermophilus LY03. Appl. Environ. Microbiol. 66: 3519-3527 https://doi.org/10.1128/AEM.66.8.3519-3527.2000
  6. De Vuyst, L., F. Vanderveken, S. Van de Ven, and B. Degeest. 1998. Production by and isolation of exopolysaccharides from Streptococcus thermophilus grown in a milk medium and evidence for their growth-associated biosynthesis. J. Appl. Microbiol. 84: 1059-1068 https://doi.org/10.1046/j.1365-2672.1998.00445.x
  7. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colometric method for determination of sugar and related substances. Anal. Chem. 28: 350-356 https://doi.org/10.1021/ac60111a017
  8. Dupont, I., D. Roy, and G. Lapointe. 2000. Comparison of exopolysaccharide production by strains of Lactobacillus rhamnosus and Lactobacillus paracasei grown in chemically defined medium and milk. J. Ind. Microbiol. Biotechnol. 24: 251-255 https://doi.org/10.1038/sj.jim.2900810
  9. Gamar, L., K. Blondeau, and J. M. Simonet. 1997. Physiological approach to extracellular polysaccharide production by Lactobacillus rhamnosus strain C83. J. Appl. Microbiol. 83: 281-287 https://doi.org/10.1046/j.1365-2672.1997.00228.x
  10. Grobben, G. J., J. Sikkema, M. R. Smith, and J. A. De Bont. 1995. Production of extracellular polysaccharides by Lactobacillus delbrueckii ssp. bulgaricus NCFB 2772 grown in a chemically defined medium. J. Appl. Bacteriol. 79: 103-107 https://doi.org/10.1111/j.1365-2672.1995.tb03130.x
  11. Grobben, G. J., W. H. M. Van Casteren, H. A. Schols, A. Oosterveld, G. Sala., M. R. Smith, J. Sikkema, and J. A. M. De Bont. 1997. Analysis of the exopolysaccharides produced by Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772 grown in continuous culture on glucose and fructose. Appl. Microbiol. Biotechnol. 48: 516-521 https://doi.org/10.1007/s002530051089
  12. Kim, H. J., J. H. Kim, J. H. Son, H. J. Seo, S. J. Park, N. S. Paek, and S. K. Kim. 2004. Characterization of bacteriocin produced by Lactobacillus bulgaricus. J. Microbiol. Biotechnol. 14: 503-508
  13. Kim S. H., S. J. Yang, H. C. Koo, W. K. Bae, J. Y. Kim, J. H. Park, Y. J. Baek, and Y. H. Park. 2001. Inhibitory activity of Bifidobacterium longum HY8001 against Vero cytotoxin of Escherichia coli O157:H7. J. Food Prot. 64: 1667-1673 https://doi.org/10.4315/0362-028X-64.11.1667
  14. Kim, S. J., J. H. Kim, J. Y. Park, H. T. Kim, S. J. Jeong, Y. L. Ha, H. D. Yun, and J. H. Kim. 2004. Cold adaptation of Lactobacillus paraplantarum C7 isolated from kimchi. J. Microbiol. Biotechnol. 14: 1071-1074
  15. Kim, T. W., H. S. Song, and H. Y. Kim. 2005. Distribution of dominant Bifidobacteria in the intestinal microflora of Korean adults and seniors, identified by SDS-PAGE of whole cell proteins and 16S rDNA sequence analysis. J. Microbiol. Biotechnol. 15: 388-394
  16. Landersjo, C., Z. Yang, E. Huttunen, and G. Widmalm. 2002. Structural studies of the exopolysaccharide produced by Lactobacillus rhamnosus strain GG (ATCC 53103). Biomacromolecules 3: 880-884 https://doi.org/10.1021/bm020040q
  17. Lee, J. H., M. J. Kim, D. W. Jeong, M. J. Kim, J. H. Kim, H. C. Chang, D. K. Chung, H. Y. Kim, K. H. Kim, and H. J. Lee. 2005. Identification of bacteriocin-producing Lactobacillus paraplantarum first isolated from kimchi. J. Microbiol. Biotechnol. 15: 428-433
  18. Marshall, V. M., E. N. Cowie, and R. S. Moreton. 1995. Analysis and production of two exopolysaccharides from Lactococcus lactis subsp. cremoris LC330. J. Dairy Res. 62: 621-628 https://doi.org/10.1017/S0022029900031356
  19. Marshall, V. M. and H. L. Rawson. 1999. Effects of exopolysaccharide-producing strains of thermophilic lactic acid bacteria on the texture of stirred yoghurt. Int. J. Food Sci. Technol. 34: 137-143 https://doi.org/10.1046/j.1365-2621.1999.00245.x
  20. Oda, M., H. Hasegawa, S. Komatsu, K. Kambe, and F. Tsuchiya. 1983. Antitumor polysaccharides from Lactobacillus subsp. Agric. Biol. Chem. 47: 1623-1625 https://doi.org/10.1271/bbb1961.47.1623
  21. Oh, S., R. W. Worobo, B. C. Kim, S. Rheem, S. H. Kim. 2000. Detection of the cholera toxin-binding activity of kappa-casein macropeptide and optimization of its production by the response surface methodology. Biosci. Biotechnol. Biochem. 64: 516-522 https://doi.org/10.1271/bbb.64.516
  22. Pham, P. L., I. Dupont, D. Roy, G. Lapointe, and J. Cerning. 2000. Production of exopolysaccharide by Lactobacillus rhamnosus R and analysis of its enzymatic degradation during prolonged fermentation. Appl. Environ. Microbiol. 66: 2302-2310 https://doi.org/10.1128/AEM.66.6.2302-2310.2000
  23. Petry, S., S. Furlan, M. J. Crepeau, J. Cerning, and M. Desmazeaud. 2000. Factors affecting exocellular polysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus grown in a chemically defined medium. Appl. Environ. Microbiol. 66: 3427-3431 https://doi.org/10.1128/AEM.66.8.3427-3431.2000
  24. Toba, T., T. Kotani, and S. Adachi. 1991. Capsular polysaccharide of a slime-forming Lactococcus lactis ssp. cremoris LAPT 3001 isolated from Swedish fermented milk 'langfil'. Int. J. Food Microbiol. 12: 167-172 https://doi.org/10.1016/0168-1605(91)90066-X
  25. Wasser, S. P. 2002. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl. Microbiol. Biotechnol. 60: 258-274 https://doi.org/10.1007/s00253-002-1076-7
  26. Welman, A. D. and I. S. Maddox. 2003. Exopolysaccharides from lactic acid bacteria: Perspectives and challenges. Trends Biotechnol. 21: 269-274 https://doi.org/10.1016/S0167-7799(03)00107-0
  27. Zaidman, B. Z., M. Yassin, J. Mahajna, and S. P. Wasser. 2005. Medicinal mushroom modulators of molecular targets as cancer therapeutics. Appl. Microbiol. Biotechnol. 67: 453-468 https://doi.org/10.1007/s00253-004-1787-z
  28. Zisu, B. and N. P. Shah. 2003. Effects of pH, temperature, supplementation with whey protein concentrate, and adjunct cultures on the production of exopolysaccharides by Streptococcus thermophilus 1275. J. Dairy Sci. 86: 3405-3415 https://doi.org/10.3168/jds.S0022-0302(03)73944-7