Production and Location of Xylanolytic Enzymes in Alkaliphilic Bacillus sp. K-1

  • Lee Yun-Sik (Department of Endocrinology, University of Pennsylvania School of Medicine) ;
  • Ratanakhanokchai Khanok (School of Bioresources and Technology, King Mongkut's University of Technology Thonburi) ;
  • Piyatheerawong Weela (School of Bioresources and Technology, King Mongkut's University of Technology Thonburi) ;
  • Kyu Khin-Lay (School of Bioresources and Technology, King Mongkut's University of Technology Thonburi) ;
  • Rho Min-Suk (Department of Applied Biochemistry, Konkuk University) ;
  • Kim Yong-Seok (Department of Biochemistry, College of Medicine, Hanyang University) ;
  • Om Aeson (Department of Food Science and Nutrition, College of Human Ecology, Hanyang University) ;
  • Lee Joo-Won (Department of Pharmacology, College of Medicine, Hanyang University) ;
  • Jhee Ok-Hwa (Department of Food Science and Nutrition, College of Human Ecology, Hanyang University) ;
  • Chon Gil-Hyung (Department of Infection Biology, College of Medicine, Wonkwang University) ;
  • Park Hyun (Department of Infection Biology, College of Medicine, Wonkwang University) ;
  • Kang Ju-Seop (Department of Pharmacology, College of Medicine, Hanyang University)
  • Published : 2006.06.01

Abstract

The production and location of xylanolytic enzymes in alkaliphilic Bacillus sp. K-1, isolated from the wastewater treatment plant of the pulp and paper industry, was studied. When grown in alkaline xylan medium, the bacteria produced xylanolytic enzymes such as xylanase, $\beta$-xylosidase, arabinofuranosidase, and acetyl esterase. Two types of xylanases (23 and 45 kDa) were found to be extracellular, but another type of xylanase (35 and/or 40 kDa) was detected as pellet-bound that was eluted with 2% triethylamine from the residual xylan of the culture. The xylanases were different in their molecular weight and xylan-binding ability. Arabinofuranosidase and $\beta$-xylosidase were found to be intracellular and extracellular, respectively, and acetyl esterase was found to be extracellular. The extracellular xylanolytic enzymes effectively hydrolyzed insoluble xylan, lignocellulosic materials, and xylans in kraft pulps.

Keywords

References

  1. Berg, B., B. V. Hofstan, and G. Petterson. 1972. Growth and cellulase formation by Cellvibrio fulvus. J. Appl. Bacteriol. 35: 201-214 https://doi.org/10.1111/j.1365-2672.1972.tb03691.x
  2. Biely, P., M. Vrsanska, and Z. Kratki. 1980. Xylandegrading enzymes of the yeast Cryptococcus albidus. Identification and cellular localization. Eur. J. Biochem. 108: 313-321 https://doi.org/10.1111/j.1432-1033.1980.tb04725.x
  3. Biely, P., J. Puls, and H. Schneider. 1985. Acetyl xylan esterase in fungal cellulolytic systems. FEBS Lett. 186: 80-84 https://doi.org/10.1016/0014-5793(85)81343-0
  4. Black, G. W., G. P. Hazlewood, S. J. Millward-Sadler, J. I. Laurie, and H. J. Gilbert. 1995. A modular xylanase containing a novel non-catalytic xylan-specific binding domain. Biochem. J. 307: 191-195 https://doi.org/10.1042/bj3070191
  5. Busto, M. D., N. Ortega, and M. Perez-Mateos. 1996. Location, kinetics and stability of cellulases induced in Trichoderma reesei cultures. Bioresource Technol. 57: 187-192 https://doi.org/10.1016/0960-8524(96)00073-9
  6. Dekker, R. F. H. and G. N. Richards. 1975. Purification, properties and mode of action of hemicellulase I produced by Ceratoxis paradoxa. Carbohyr. Res. 42: 107-123 https://doi.org/10.1016/S0008-6215(00)84104-X
  7. Gilkes, N. R., B. Henrissat, D. G. Kilburn, R. C. Miller, Jr., and R. A. J. Warren. 1991. Domains in microbial ${\beta}$-1,4-glycanases: Sequence conservation, function and enzyme families. Microbiol. Rev. 55: 303-315
  8. Hall, J., G. W. Black, L. M. A. Ferreira, S. J. Millward- Sadler, and B. R. S. Ali. 1995. The non-catalytic cellulose-binding domain of a novel cellulase from Pseudomonas fluorescens subsp. cellulosa is important for the efficient hydrolysis of avicel. Biochem. J. 309: 749-756 https://doi.org/10.1042/bj3090749
  9. Irwin, D., E. D. Jung, and D. B. Wilson. 1994. Characterization and sequence of a Thermomonospora fusca. Appl. Environ. Microbiol. 60: 763-770
  10. Kaneko, S., T. Shimasaki, and I. Kusakabe. 1993. Purification and some properties of intracellular ${\alpha}$-L-arabinofuranosidase from Aspergillus niger 5-16. Biosci. Biotech. Biochem. 57: 1161-1165 https://doi.org/10.1271/bbb.57.1161
  11. Karita, S., K. Sakka, and K. Ohmiya. 1996. Cellulosebinding domains confer an enhanced activity against insoluble cellulose to Ruminococcus albus endoglucanase IV. J. Ferment. Bioeng. 81: 553-556 https://doi.org/10.1016/0922-338X(96)81479-6
  12. Klier, A. F. and G. Rapoport. 1988. Genetic and regulation of carbohydrate catabolism in Bacillus. Annu. Rev. Microbiol. 42: 65-95 https://doi.org/10.1146/annurev.mi.42.100188.000433
  13. Kowit, J. D., W. Choy, S. P. Champe, and A. L. Goldberg. 1976. Role and location of protease I from Escherichia coli. J. Bacteriol. 128: 776-782
  14. Kyu, K. L., K. Ratanakhanokchai, D. Uttapap, and M. Tanticharoen. 1994. Induction of xylanase in Bacillus circulans $B_6$. Bioresource Technol. 48: 163-167 https://doi.org/10.1016/0960-8524(94)90204-6
  15. Lee, J. J., K. S. Hahm, K. Y. Lee, and S. T. Lee. 1997. Characterization of an endoxylanase produced by an isolated strain of Bacillus sp. J. Microbiol. Biotechnol. 7: 114-120
  16. Lee, Y. E., S. E. Lowe, and G. Zeikus. 1993. Regulation and characterization of xylanolytic enzymes of Thermoanaerobacterium saccharolyticum B6A-RI. Appl. Environ. Microbiol. 59: 763-771
  17. Liu, X. M., M. Qi, J. Q. Lin, Z. H. Wu, and Y. B. Qu. 2001. Asparagine residue at position 71 is responsible for alkalitolerance of the xylanase from Bacillus pumis A-30. J. Microbiol. Biotechnol. 11: 534-538
  18. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275
  19. Mackenzie, C. R., D. Bilous, H. Schneider, and K. G. Johnson. 1987. Induction of cellulolytic and xylanolytic enzyme systems in Streptomyces spp. Appl. Environ. Microbiol. 53: 2835-2839
  20. Millward-Sadler, S. J., D. M. Poole, B. Henrissat, G. P. Hazlewood, J. H. Clarke, and H. J. Gilbert. 1994. Evidence for a general role for high-affinity non-catalytic cellulose binding domains in microbial plant cell wall hydrolases. Molec. Microbiol. 11: 375-382 https://doi.org/10.1111/j.1365-2958.1994.tb00317.x
  21. Ratanakhanokchai, K. and K. L. Kyu. 1997. Cellulosome structure of thermophilic cellulolytic and alkaliphilic xylanolytic bacterium which produced specific xylan-binding xylanase, p. 10. In abstract of the Seminar of JSPS-NRCT/DOST/LIPI/ VCC Large-scale Cooperative Research in the Field of Biotechnology, at Suranaree University of Technology, Nakhon Ratchasima, Thailand, JSPS-I-A-4
  22. Ratanakhanokchai, K., K. L. Kyu, and M. Tanticharoen. 1999. Purification and properties of a xylan-binding endoxylanase from alkaliphilic Bacillus sp. strain K-1. Appl. Environ. Microbiol. 65: 694-697
  23. Reese, E. T. 1997. Degradation of polymeric carbohydrates by microbial enzymes. Recent Adv. Phytochem. 11: 311-365
  24. Royer, J. C. and J. P. Nakas 1989. Xylanase production by Trichoderma longibrachiatum. Enzyme Microbiol. Technol. 11: 405-410 https://doi.org/10.1016/0141-0229(89)90134-8
  25. Salusbury, T. 1989. Methods of tissue and cell disruption, pp. 90-95. In E. L. V. Harris and S. Angal (eds.), Protein Purification Methods. IRL Press, Oxford
  26. Somogyi, M. 1952. Notes in sugar determination. J. Biol. Chem. 195: 265-275
  27. Stoppok, W., P. Rapp, and F. Wagner. 1982. Formation, location and regulation of endo-1, 4-${\beta}$-glucanases and ${\beta}$-glucosidases from Cellulomonas uda. Appl. Environ. Microbiol. 44: 44-53
  28. Sun, J. L., K. Sakka, S. Karita, T. Kimura, and K. Ohmiya. 1998. Adsorption of Clostridium stercorarium xylanase A to insoluble xylan and the importance of the CBD to xylan hydrolysis. J. Ferment. Bioeng. 85: 63-68 https://doi.org/10.1016/S0922-338X(97)80355-8
  29. Tsujibo, H., T. Ohtsuki, T. Ilo, L. Yamazaki, K. Miyamoto, M. Sugiyama, and Y. Inamori. 1997. Cloning and sequence analysis of genes encoding xylanases and acetyl xylan esterase from Streptomyces thermoviolaceus OPC-520. Appl. Environ. Microbiol. 63: 661-664
  30. Viikari, L., A. Kantelinen, J. Sundquist, and M. Linko. 1994. Xylanases in bleaching: From an idea to the industry. FEMS Microbiol. Rev. 13: 335-350 https://doi.org/10.1111/j.1574-6976.1994.tb00053.x
  31. Wong, K. K. Y., L. U. L. Tan, and J. N. Saddler. 1988. Multiplicity of ${\beta}$-1,4-xylanase in microorganisms: Functions and applications. Microbiol. Rev. 52: 305-317
  32. Yamani, K., T. Yoshikawa, H. Suzuki, and K. Nisizawa. 1971. Localization of cellulase components in Pseudomonas fluorescens var. cellulosa. J. Biochem. 69: 771-778 https://doi.org/10.1093/oxfordjournals.jbchem.a129525