Abstract
The importance of the bandwidth selection has been more emphasized than the kernel function selection for nonparametric frequency analysis since the interpolation is more reliable than the extrapolation method. However, when the extrapolation method is being applied(i.e. recurrence interval more than the length of data or extreme probabilities such as $200{\sim}500$ years), the selection of the kernel function is as important as the selection of the bandwidth. So far, the existing kernel functions have difficulties for extreme value estimations because the values extrapolated by kernel functions are either too small or too big. This paper suggests a Modified Cauchy kernel function that is suitable for both interpolation and extrapolation as an improvement.
비매개변수적 빈도해석을 위해 제시되는 핵밀도함수 방법에서 내삽법은 외삽법보다 더 신뢰적이기 때문에 내삽법과 관련된 광역폭의 선택이 외삽 문제와 연관되는 핵함수의 선택보다 중요하다. 그러나, 재현기간이 자료구간보다 커지거나 또는 $200{\sim}500$년 빈도 발생과 같은 확률 값에 대한 추정을 하는 경우는 자료의 외삽이 중요한 문제이며 따라서 이에 따른 핵함수의 선택도 중요시된다. 핵함수에 따라서는 외삽에 대해 상대적으로 작거나 큰 값이 제시 될 수 있으므로 극치값 추정에는 어려운 점이 있다. 따라서 본 논문에서는 일반적으로 내삽 및 외삽에도 적합한 핵함수로 Modified Cauchy 핵함수를 제시하였다.