DOI QR코드

DOI QR Code

Influence of Benzyladenine on in vitro Growth, Chlorophyll and Photosynthetic Enzymes in Tobacco

담배의 기내 생장, 엽록소 및 광합성 효소에 미치는 벤질 아데닌의 영향

  • Roh Kwang-Soo (Department of Biology, Keimyung University) ;
  • Kim Yu-Mi (Department of Biology, Keimyung University)
  • Published : 2006.06.01

Abstract

The influence of $N^6-benzyladenine$ (BA) on in vitro growth, chlorophyll, rubisco and rubisco activase were studied in tobacco. After 11 weeks of treatment of various concentrations of BA, the most pronounced effect on in vitro growth and chlorophyll was found at 2 ${\mu}M$ BA. Rubisco content increased with increasing concentrations of BA, but a point at 2 ${\mu}M$ BA was reached beyond which increasing concentrations of BA cause inhibition of this enzyme. Rubisco activity showed patterns of change similar to rubisco content. These data suggest that rubisco activity was associated with an amount of rubisco protein. Under the assumption that effects of BA on rubisco may be related to by rubisco activase, in addition to, its content and activity were determined. The rubisco activase content at 2 ${\mu}M$ BA was more increased than other treatments. A similar change pattern was also observed in activity of rubisco activase. These results suggest that the effects of the activation of rubisco by BA seem to be related with rubisco activase.

담배에서 기내 생장, 엽록소 및 광합성 효소인 rubisco와 rubisco activase에 미치는 벤질 아데닌(BA)의 영향을 연구하였다. 여러 농도의 BA 처리 후 11주에 2 ${\mu}M$의 농도에서 기내 생장과 엽록소의 함량이 가장 현저하였다. Rubisco의 함량은 BA의 농도가 증가함에 따라 같이 증가하여 2 ${\mu}M$에서 가장 높았으나, 이후 농도의 증가에 따라 감소함으로서 억제 현상을 보였다. Rubisco의 활성 또한 함량과 같은 현상을 나타냈다. 이 결과들은 rubisco의 활성이 함량과 연관되어 있음을 의미한다. Rubisco에 대한 이러한 효과가 rubisco activase와 관련되어 있을 것이라는 가정하에 이 효소의 함량과 활성을 측정한 결과, 2 ${\mu}M$ BA에서 가장 증가하였다. 이러한 결과들을 종합하면 BA에 의한 rubisco의 활성화 효과는 rubisco activase와 관련되어 있음을 보여준다.

Keywords

References

  1. Auer, C. A., M. Laloue, J. D. Cohen and J. Todd. 1992. Uptake and metabolism of benzyladenine during shoot organogenesis in petunia leaf explants. Plant Growth Regulation 11, 105-114 https://doi.org/10.1007/BF00024063
  2. Brault, M. and R. Maldiney. 1999. Mechanisms of cytokinin action. Plant Physiol. Biochem. 37, 403-412 https://doi.org/10.1016/S0981-9428(99)80046-1
  3. Camp, P. J., S. C. Huber, J. J. Burke and D. E. Moreland. 1982. Biochemical changes that occur during senescence of wheat leaves. I. Basis for the reduction of photosynthesis. Plant Physiol. 70, 1641-1646 https://doi.org/10.1104/pp.70.6.1641
  4. Coenen, C. and T. L. Lomax. 1997. Auxin-cytokinin interactions in higher plants: Old problems and new tools. Trends Plant Sci. 2, 351-356 https://doi.org/10.1016/S1360-1385(97)84623-7
  5. Eymar, E., J. Alegre, M. Toribio and D. López-Vela. 2000. Effect of activated charcoal and 6-benzyladenine on in vitro nitrogen uptake by Lagerstroemia indica. Plant Cell Tissue Organ Culture 63, 57-65 https://doi.org/10.1023/A:1006471519609
  6. Inskeep, W. P. and P. R. Bloom. 1985. Extinction coefficients of chlorophyll a and b in N, N-dimethylformamide and 80% acetone. Plant Physiol. 77, 483-485 https://doi.org/10.1104/pp.77.2.483
  7. Jensen, R. G. 2000. Activation of rubisco regulates photo-synthesis at high temperature and $CO_2$. Proc. Natl. Acad. Sci. USA 97, 12937-12938
  8. Kim, B. W., M. S. Choi K. S. Roh and Y. G. Park. 1993. Somatic embryogenesis from leaf callus of Lycium chinense Mill. Kor. J. Plant Biotechnol. (formerly Kor. J. Plant Tissue Culture) 20, 91-96
  9. Leong, T. -Y. and J. Anderson. 1984. Adaptation of the thylakoid membranes of pea chloroplasts to light intensities. I. Study on the distribution of chlorophyll-protein complexes. Photosynth. Res. 5, 105-115 https://doi.org/10.1007/BF00028524
  10. Leong, T. -Y. and J. Anderson. 1984. Adaptation of the thylakoid membranes of pea chloroplasts to light intensities. II. Regulation of electron transport capacities, electron cariers, coupling factor (CF1) activity and rates of photosyn-thesis. Photosynth. Res. 5, 117-128 https://doi.org/10.1007/BF00028525
  11. Ma, Q. -H., Z. -B. Lin and D. -Z. Fu. 2002. Increased seed cytokinin levels in transgenic tobacco influence embryo and seedling development. Funct. Plant Biol. 29, 1107-1113 https://doi.org/10.1071/PP01211
  12. Medford, J. I. and I. M. Sussex. 1989. Regulation of chlorophyll and rubisco levels in embryonic cotyledons of Phaseolus vulgaris. Planta 179, 309-315 https://doi.org/10.1007/BF00391075
  13. Mengel, K. and E. A. Kirkby. 2001. Principles of Plant Nutrition. 5th eds., Kluwer, Dordrecht
  14. Merillon, J. M., D. Liu, F. Huguet, J. C. Chenieux and M. Rideau. 1991. Effects of calcium entry blockers and calmodulin inhibitors on cytokinin-enhanced alkaloid accumulation in Catharanthus roseus cell cultures. Plant Physiol. Biochem. 29, 289-296
  15. Murashige, T. and F. Skoog. 1962. A revised medium for growth and bioassays with tobacco tissue culture. Physiol. Plant 15, 473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  16. Ohya, T. and H. Suzuki. 1991. The effects of benzyladenine on the accumulation of messenger RNAs that encode the large and small subunits of ribulose 1,5-bisphosphate carboxylase/oxygenase and light-harvesting chlorophyll a/b protein in excised cucumber cotyledons. Plant Cell Physiol. 32, 577-580
  17. Portis, A. R. Jr. (1992) Regulation of ribulose 1.5-bisphosphate carboxylase/ oxygenase activity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 415-437 https://doi.org/10.1146/annurev.pp.43.060192.002215
  18. Pospisilova, J., Synkova H. and J. Rulcova. 2000. Cytokinins and water stress. Biol Plant 43.321-328 https://doi.org/10.1023/A:1026754404857
  19. Racker, E. 1962. Ribulose diphosphate carboxylase from spinach leaves. Methods Enzymol. 5, 266-270 https://doi.org/10.1016/S0076-6879(62)05216-7
  20. Ramage, C. M. and R. R. Williams. 2004. Cytokinin-induced abnormal shoot organogenesis is associated with elevated Knotted 1-type homeobox gene expression in tobacco. Plant Cell Rep. 22, 919-924
  21. Robinson, S. P. and A. R. Portis Jr. 1989. Adenosine triphosphate hydrolysis by purified rubisco activase. Arch. Biochem. Biophys. 268, 93-99 https://doi.org/10.1016/0003-9861(89)90568-7
  22. Roh, K. S. and H. S. Chin. 2005. Cadmium toxicity and calcium effect on growth and photosynthesis of tobacco. Kor. J. Life Science 15, 453-460 https://doi.org/10.5352/JLS.2005.15.3.453
  23. Roh, K. S., E. J. Im, S. E. Yeo, M. J. Oh, J. S. Song, H. S. Chung and S. D. Song. 2001. Exogenous $GA_3$ increases rubisco activation in soybean leaves. J. Plant Biology 44, 53-60 https://doi.org/10.1007/BF03030276
  24. Roh, K. S., I. S. Kim, B. W. Kim, J. S. Song, H. S. Chung and S. D. Song. 1997. Decrease in carbamylation of rubisco by high $CO_2$ concentration is due to decrease of rubisco activase in kidney bean. J. Plant Biology 40, 73-79 https://doi.org/10.1007/BF03030237
  25. Schmitt, J. M. and M. Piepenbrock. 1992. Regulation of phosphoenolpyruvate carboxylase and crassulacean acid metabolism induction in Mesembryanthemum crystallinum L. by cytokinin. Modulation of leaf gene expression by root? Plant Physiol. 99, 1664-1669 https://doi.org/10.1104/pp.99.4.1664
  26. Skoog, F. and C. O.Miller. (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. Exp. Biol. 11, 118-131
  27. Schmulling, T., S. Schafer and G. Romanov. 1997. Cytokinins as regulators of gene expression. Physiol. Plant 100, 505-519 https://doi.org/10.1111/j.1399-3054.1997.tb03055.x
  28. Su, W. and S. H. Howell. 1992. A single genetic locus, Ckr1, defines Arabidopsis mutants in which root growth is resistant to low concentrations of cytokinin. Plant Physiol. 99, 1569-1574 https://doi.org/10.1104/pp.99.4.1569
  29. Wang, Z. Y., G. W. Snyder, B. D. Esau, Portis, A. R. Jr. and W. L. Ogren. 1992. Species-dependent variation in the interaction of substrate-bound ribulose-1,5-bisphosphate carboxylase/oxygenase and rubisco activase. Plant Physiol. 100, 1858-1862 https://doi.org/10.1104/pp.100.4.1858
  30. Wei, T., L. C. Harris, V. Outhavong and R. J. Newton. 2004. The effect of different plant growth regulators on adventitious shoot formation from Virginia pine (Pinus virginiana) zygotic embryo explants. Plant Cell Tissue Organ Culture 78, 237-240 https://doi.org/10.1023/B:TICU.0000025658.73970.57
  31. Zhang, N. and A. R. Portis Jr. 1999. Mechanism of light regulation of rubisco: A specific role for the larger rubisco activase isoform involving reductive activation by thioredoxin- f. Proc. Natl. Acad. Sci. USA 96, 9438-9443