DOI QR코드

DOI QR Code

A Nucleotide Exchange Factor, BAP, dissociated Protein-Molecular Chaperone Complex in vitro

In vitro에서 핵산치환인자 BAP이 단백질-분자 샤페론 복합체 해리에 미치는 영향

  • 이명주 (동의대학교 생명응용과학과) ;
  • 김동은 (동의대학교 생명공학과) ;
  • 이태호 (부산대학교 미생물학과) ;
  • 정영기 (동아대학교 생명공학과) ;
  • 김영희 (동의대학교 생명응용과학과) ;
  • 정경태 (동의대학교 생명응용과학과)
  • Published : 2006.06.01

Abstract

Molecular chaperones and folding enzymes in the endoplasmic reticulum (ER) associate with the newly synthesized proteins to prevent their aggregation and help them fold and assemble correctly. Chaperone function of BiP, which is a Hsp70 homologue in ER, is controlled by the N-terminal ATPase domain. The ATPase activity of the ATPase domain is affected by regulatory factors. BAP was identified as a nucleotide exchange factor of BiP (Grp78), which exchanges ADP with ATP in the ATPase domain of BiP This study presents whether BAP can influence folding of a protein, immunoglobulin heavy chain that is bound to BiP tightly. We first examined which nucleotide of ADP and ATP affects on BAP binding to BiP The data showed that endogenous BAP of HEK293 cells prefers ADP for binding to BiP in vitro, suggesting that BAP first releases ADP from the ATPase domain in order to exchange with ATP. Immunoglobulin heavy chain, an unfolded protein substrate, was released from BiP in the presence of BAP but not in the presence of ERdj3, which is another regulatory factor for BiP accelerating the rate of ATP hydrolysis of BiP The ADP-releasing function of BAP was, therefore, believed to be responsible for immunoglobulin heavy chain release from BiP. Grp170, another Hsp70 homologue in ER, did not co-precipited with BAP from $[^{35}S]$-metabolic labeled HEK293 lysate containing both overexpressed Grp170 and BAP. These data suggested that BAP has no specificity to Grp170 although the ATPase domains of Grp170 and BiP are homologous each other.

소포체는 세포막의 합성뿐만 아니라 세포막에 존재하거나 세포외로 분비되어져야 할 단백질을 합성하는 세포내 소기관이다. 소포체에서 단백질이 합성되어질 경우 이황화결합이 형성되고 glycosylation 등의 수식이 일어나며, 이와 동시에 folding과 assembly과정을 거쳐 삼차원적 구조로 성숙이 되는데 이 과정은 folding enzyme과 molecular chaperone의 도움을 받아 이루어진다. 소포체 내에 존재하는 molecular chaperone 중 가장 잘 알려진 것으로 BiP이 있다. BiP의 기능은 N-terminus의 ATPase domain에 의해 조절되고 ATPase domain은 이것과 선택적으로 결합하는 조절인자에 의해 ATPase의 활성이 영향을 받는다. BiP의 핵산치환조절인자로서 발견된 BAP은 ATPase domain에 결합된 ADP를 ATP로 치환하는 것으로 기능이 알려져 있다. 이 BAP의 핵산치환기능이 BiP의 샤페론 작용에 어떤 영향을 미치는지를 in vitro에서 항체 heavy chain을 이용하여 알아보았다. BAP은 ATP보다 ADP가 결합되어 있는 BiP과 더 잘 결합을 하며, in vitro에서 BiP과 결합하고 있는 unfolded 단백질을 BAP은 BiP으로부터 해리하였다. 또한 소포체내에 존재하는 Hsp70 homologue chaperone인 BiP과 Grp170에 대한 BAP의 결합특이성을 anti-Grp170과 anti-BAP 항체로 co-immunoprecipitation을 하여 확인한 결과 BAP은 Grp170과 결합을 하지 않았다. 따라서 BAP은 ER내에 존재하는 동일한 family group에 속하는 Grp170과 BiP에 대하여 BiP에만 특이성을 갖는 것으로 나타났다.

Keywords

References

  1. Kingston, R. E., C. A. Chen, H. Okayama and J. K. Rose. 2002. Transfection of DNA into Eukaryotic Cells. 9.1.4-9.1.11, In Ausubel, F. M., Brent, R., Kinston, R. E., Moore, D. D., Seidman, J. G., Smith J. A., Struhl, K.(eds.) Current Protocols in Molecular Biology Vol 2, John Wiley & Sons, Inc
  2. Bertolotti, A., T. Zhang, L. M. Hendershot, H. P. Harding and D. Ron. 2000. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat. Cell Biol. 2, 326-332 https://doi.org/10.1038/35014014
  3. Brodsky, J. l., E. D. Werner, M. E. Dubas, J. L. Goeckeler, K. B. Kruse and A. A. McCracken. 1999. The requirement for molecular chaperones during endoplasmic reticulum- associated protein degradation demonstrates that protein export and import are mechanistically distinct. J. Biol. Chem. 274, 453-3460
  4. Chung, KT, Y. Shen, and L. M. Hendershot. 2002. BAP, a mammalian BiP-associated protein, is a nucleotide exchange factor that regulates the ATPase activity of BiP. J. Biol. Chem. 277, 47557-47563 https://doi.org/10.1074/jbc.M208377200
  5. Easton, D. P., Y. Kaneko and J. R. Subjeck. 2000. The hsp110 and Grp170 stress proteins: newly recognized relatives of the Hsp70s. Cell Stress Chaperones. 5, 276-290 https://doi.org/10.1379/1466-1268(2000)005<0276:THAGSP>2.0.CO;2
  6. Ellgaard, L., M. Molinari and A. Helenius. 1999. Setting the standards: quality control in the secretory pathway. Science. 286, 1882-1888 https://doi.org/10.1126/science.286.5446.1882
  7. Gaut, J. R. and L. M. Hendershot. 1993. Mutations within the nucleotide binding site of immunoglobulin-binding protein inhibit ATPase activity and interfere with release of immunoglobulin heavy chain. J. Biol. Chem. 268, 7248-7255
  8. Gething M. and J. Sambrook. 1992. Protein folding in the cell. Nature. 355, 33-45 https://doi.org/10.1038/355033a0
  9. Hamman, B. D., L. M. Hendershot and A. E. Johnson. 1998. BiP maintains the permeability barrier of the ER membrane by sealing thelumenal end of the translocon pore before and early in translocation. Cell. 92, 747-758 https://doi.org/10.1016/S0092-8674(00)81403-8
  10. Hartl, F. U. 1996. Molecular chaperones in cellular protein folding. Nature. 381, 571-579 https://doi.org/10.1038/381571a0
  11. Haas, I. and M. Wabl. 1983. Immunoglobulin heavy chain binding protein. Nature. 306, 387-389 https://doi.org/10.1038/306387a0
  12. Laurent, M., Y. K. Usherwood, K. Chung and L. Hendershot. 2002. A Subset of chaperones and folding enzymes form multiprotein complexes in endoplasmic reticulum to bind nascent proteins. Mol. Biol. Cell. 13, 4456-4469 https://doi.org/10.1091/mbc.E02-05-0311
  13. Liberek, K., J. Marszalek, D. Ang, C. Georgopoulos and M. Zylicz. 1991. Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPaseactivity of DnaK. Proc. Natl. Acad. Sci. USA. 188, 2874-2878
  14. Shen, Y., L. Meunier and L. M. Hendershot. 2002. Identification and characterization of a novel endoplasmic reticulum (ER) DnaJ homologue, which stimulates ATPase activity of BiP in vitro and is induced by ER stress. J. Biol. Chem. 227, 15947-15956
  15. Schroder, M. R. and J. Kaufman. 2005 The mammalian unfolded protein response. Annu. Rev. Biochem. 74, 739-789 https://doi.org/10.1146/annurev.biochem.73.011303.074134
  16. Sender, J. and M. Krieger. 2005. Mutantion in SIL1 cause Marinesco-Sjogren syndrome, a cerebellar ataxia with cataract and myopathy. Nat. Genet. 37, 1312-1324 https://doi.org/10.1038/ng1678
  17. Vanhove, M., Y. K. Usherwood and L. M. Hendershot. 2001. Unassembled Ig heavy chains do not cycle from BiP in vivo but require lightchains to trigger their release. Immunity. 15, 105-114 https://doi.org/10.1016/S1074-7613(01)00163-7
  18. We,i J., J. R. Gaut and L. M. Hendershot. 1995. In vitro dissociation of BiP-peptide complexes requires a conformational change in BiP after ATP binding but does not require ATP hydrolysis. J. Biol. Chem. 270, 26677-26682 https://doi.org/10.1074/jbc.270.44.26677
  19. Zhao, L. 2005. Protein accumulation and neurodegeneration in the Woozy mutant mouse is caused by disruption of SIL1, a cochaperone of BiP. Nat. Genet. 37, 974-979 https://doi.org/10.1038/ng1620