DOI QR코드

DOI QR Code

효모의 미토콘드리아 형질전환을 통한 인위적인 operon 형식의 유전자 발현 규명

Identification of Artificial Operon Gene Expression via Yeast Mitochondrial Transformation

  • 김경민 (상주대학교 생명자원과학대학 환경원예학과) ;
  • 설일환 (대구외국어대학교 생명공학부)
  • Kim Kyung-Min (Department of Environmental Horticulture, Sangju National University) ;
  • Sul Il-Whan (Department of Biotechnology, Daegu University of Foreign Studies)
  • 발행 : 2006.06.01

초록

본 실험에서는 식물의 유용유전자를 개발하여 그 발현양상을 확인하기 위하여 효모를 이용하면 그 발현양상을 비교적 빠르게 확인할 수 있는 미토콘드리아 형질전환 방법을 규명하였다. 또한 미토콘드리아(mt)에 관련된 유전자를 TPI promoter를 가진 plasmid에 재조합한 후 효모에 형질전환하여 mt에서 그 유전자의 특성이 발현 되는 것을 확인하였다. 따라서 본 연구의 결과로 mt에 관련된 유전자를 식물의 조직에 형질전환 하여 1개 이상의 유전자가 식물의 mt에 삽입되어 그 유전자의 특성이 발현되는데 이용되어 질수 있을 것이라 생각된다.

Yeast mitochondrial transformation has been confirmed by cell death and CFP expression (CDF: cell death factor gene). Expression vector containing CDF and CFP driven by one TPI (Triose-phosphate isomerase) promoter (called artificial operon type) was bombarded to Yeast. Interestingly, yeast cells were progressively deformed into unusual shapes and lysed inner cytoplasm resulting in ell death after all after bombarding with expression vector (CDC and GFP). Since there is no report about more than one gene expression simultaneously in a single mitochondria, this report is very important to novel type of eukaryotic gene expression. Successful yeast cell transformation in this report implies possible eukaryotic mitochodrial transformation including plants and animals and moreover two or more gene expression which can be excellent applicable protocols to pharmaceutical field including antibody production.

키워드

참고문헌

  1. Cann, R. L., M. Stoneking and A. C. Wilson. Mitochondrial DNA and human evolution. Nature 325, 31-36 https://doi.org/10.1038/325031a0
  2. Kawai, M., L. Pan, J. C. Reed and H. Uchimiya. 1999. Evolutionally conserved plant homologue of the Bax in hibitor-1 (BI-1) gene capable of suppressing Bax-indicedcell death in yeast. FEBS Lett. 464, 143-147 https://doi.org/10.1016/S0014-5793(99)01695-6
  3. Kawai-Yamada, M., Y. Saito, L. Jin, T. Ogawa, K. M. Kim, L. H. Yu, Y. Tone, A. Hirata, M. Umeda and H. Uchimiya. 2005. A novel Arabidopsis gene causes Bax-like lethality in Saccharomyces cerevisiae. Journal of Biological Chemistry 280, 39468-39473 https://doi.org/10.1074/jbc.M509632200
  4. Kim, K. M., Y. H. Park, C. K. Kim, K. Hirschi and J. K. Sohn. 2005. Development of transgenic rice plants over expressing the Arabidopsis $H^+/Ca^{2+}$ antiporter CAX1 gene. Plant Cell Reports 23, 678-682 https://doi.org/10.1007/s00299-004-0861-4
  5. Lew, D. J., V. Dulic and S. I. Reed. 1991. Isolation of three novel human cyclins by rescue of G1 cyclin (Cln) function in yeast. Cell 66, 1197-1206 https://doi.org/10.1016/0092-8674(91)90042-W
  6. Nei, M. and R. K. Kohen. 1983. Evolution of genes and proteins. In chapter 4 (Evolution of animal mitochondrial DNA), Sinauer Associates, Sunderland, Ma., USA
  7. Pan, L., M. Kawai, L. H. Yu, K. M. Kim, A. Hirata, M. Umeda and H. Uchimiya. 2001. The Arabidopsis thaliana-ethylene-response element binding protein (AtEBP) can function as a dominant suppressor of Bax-induced cell death of yeast. FEBS letters 508, 375-378 https://doi.org/10.1016/S0014-5793(01)03098-8
  8. Pehu, E. 1991. RFLP analysis of organellar genomes in somatic bybrids. In: Plant Tissue Culture Manual D6, pp. 1-8, Kluwer Academic Publishers, The Netherlands
  9. Reed, J. C. 1994. Bcl-2 and the regulation of programmed cell death. J. Cell. Biol. 124, 1-6 https://doi.org/10.1083/jcb.124.1.1
  10. Reed, J. C. 1997. Double identity for proteins of the Bcl-2 family. Nature 387, 773-776 https://doi.org/10.1038/42867
  11. Strachan, O. and A. P. Read. 1996. Human Molecular Genetics, In chapter 7, BIOS Scientific Publisher Ltd., Magdalen Road, Oxford, UK
  12. Umeda, M., R. P. Bhalerao, J. Schell, H. Uchimiya and C. Koncz. 1998. A distinct cyclin-dependent kinase-activating kinase of Arabidopsis thaliana. Proc. Natl, Acad. Sci USA 95, 5021-5026
  13. Wolstenholmn, D. R. 1992. Animal mitochondrial DNA : Structure and evolution. Int. Rev. Cytol. 141, 173-216 https://doi.org/10.1016/S0074-7696(08)62066-5