Unsteady Lift Measurements of the Dragonfly-type Wing

잠자리 유형 날개의 비정상 양력 측정

  • 김송학 (한국항공대학교 대학원 항공우주공학과) ;
  • 장조원 (한국항공대학교 항공운항학과)
  • Published : 2006.06.30

Abstract

Unsteady lift measurements were carried out in order to investigate the effects of phase difference and reduced frequency of a dragonfly-type model with two pairs of wing. A load-cell was employed to measure the lift generated by a plunging motion of the dragonfly-type model with the incidence angles of 0$^{circ}$. Experimental conditions are as follows: phase differences between fore- and hind-wings are 0$^{circ}$, 90$^{circ}$, 180$^{circ}$, and 270$^{circ}$, and reduced frequencies are 0.075, 0.15 and 0.225, respectively. The freestream velocity was 143 m/sec and corresponding chord Reynolds number was $3.4{\times}10^3$. The variation of phase-averaged lift coefficients during one cycle of the wing motion is presented. Results show that the total value of the positive lift coefficient during one cycle of the wing motion is the largest at the phase difference of 90$^{circ}$, and that the maximum lift coefficient and lift coefficient per unit of time increases with reduced frequency.

Keywords