DOI QR코드

DOI QR Code

Analytical p-version finite elements and application in analyses of structural collision protection

  • Zhu, B. (Department of Civil Engineering, Zhejiang University) ;
  • Chen, Y.M. (Department of Civil Engineering, Zhejiang University) ;
  • Leung, A.Y.T. (Department of Building and Construction, City University of Hong Kong)
  • Received : 2005.10.11
  • Accepted : 2006.03.23
  • Published : 2006.07.30

Abstract

Several new versatile two-dimensional p-version finite elements are developed. The element matrices are integrated analytically to guarantee the accuracy and monotonic convergence of the predicted solutions of the proposed p-version elements. The analysis results show that the convergence rate of the present elements is very fast with respect to the number of additional Fourier or polynomial terms in shape functions, and their solutions are much more accurate than those of the linear finite elements for the same number of degrees of freedom. Additionally, the new p-version plate elements without the reduced integration can overcome the shear locking problem over the conventional h-version elements. Using the proposed p-version elements with fast convergent characteristic, the elasto-plastic impact of the structure attached with the absorber is simulated. Good agreement between the simulated and experimental results verifies the present p-version finite elements for the analyses of structural dynamic responses and the structural elasto-plastic impact. Further, using the elasto-plastic impact model and the p-version finite element method, the absorber of the T structure on the Qiantang River is designed for its collision protection.

Keywords

References

  1. Bardell, N.S. (1991), 'Free vibration analysis of a flat plate using the hierarchical finite element method', J. Sound Vib., 151(2), 263-289 https://doi.org/10.1016/0022-460X(91)90855-E
  2. Bardell, N.S. (1992), 'The free vibration of skew plates using the hierarchical finite element method', Comput. Struct., 45(5-6),841-874 https://doi.org/10.1016/0045-7949(92)90044-Z
  3. Beslin, O. and Nicolas, J. (1997), 'Hierarchical functions set for predicting very high order plate bending modes with any boundary conditions', J. Sound Vib., 202(5), 633-655 https://doi.org/10.1006/jsvi.1996.0797
  4. Clough, R.W. and Penzien, J. (1993), Dynamics of Structures, 2nd Edition, McGraw-Hill, New York, U.S.A
  5. Cote, A. and Charron, F. (2001), 'On the selection of p-version shape functions for plate vibration problems', Comput. Struct., 79, 119-130 https://doi.org/10.1016/S0045-7949(00)00115-2
  6. Davalos, J.F., Qiao, P.Z., Xu, X.F., Robinson, J. and Barth, K.E. (2001), 'Modeling and characterization of fiberreinforced plastic honeycombsandwich panels for highway bridge applications', Comp. Struct., 52, 441-452 https://doi.org/10.1016/S0263-8223(01)00034-4
  7. Dalenbring, M. and Zdunek, A. (2005), 'On the use of three-dimensinal h- and p-version finite elements in solving vibration response problems', J. Sound Vib., 288, 907-929 https://doi.org/10.1016/j.jsv.2005.01.028
  8. Deshpande, V.S. and Fleck, N.A. (2000), 'High strain rate compressive behaviour of aluminium alloy foams', Int. J. Impact Eng., 24, 277-298 https://doi.org/10.1016/S0734-743X(99)00153-0
  9. Houmat, A. (2001), 'A sector Fourierp-element applied to free vibration analysis of sectorial plates', J. Sound Vib., 243(2), 269-282 https://doi.org/10.1006/jsvi.2000.3410
  10. Houmat, A. (2000), 'A triangular Fourier p-element for the analysis of membrane vibrations', J. Sound Vib., 230(1),31-43 https://doi.org/10.1006/jsvi.1999.2613
  11. Irie, T., Yamada, G and Narita, Y. (1978), 'Free vibration of clamped polygonal plates', Bulletin of the JSME, 21, 1696-1702 https://doi.org/10.1299/jsme1958.21.1696
  12. Kitipomchai, A., Liew, K.M., Xiang, Y. and Wang, C.M. (1993), 'Free flexural vibration of triangular Mindlin plates', Int. J. Mech. Sci., 35(2),89-102 https://doi.org/10.1016/0020-7403(93)90068-6
  13. Leung, A.Y.T. (1993), Dynamic Stiffness and Substructures, Springer-Verlag, London, U'K
  14. Leung, A.Y.T. and Zhu, B. (2004a), 'Comments on 'Free vibration of skew Mindlin plates by p-version of FEM', J. Sound Vib., 278(3), 699-703 https://doi.org/10.1016/j.jsv.2003.12.022
  15. Leung, A.Y.T. and Zhu, B. (2004b), 'Fourier p-elements for curved beam vibrations', Thin-Walled Structures, 42(1), 39-57 https://doi.org/10.1016/S0263-8231(03)00122-8
  16. Leung, A.Y.T. and Zhu, B. (2004c), 'Transverse vibration of thick polygonal plates using analytically integrated trapezoidal Fourier p-element', Comput. Struct., 82(2-3), 109-119 https://doi.org/10.1016/j.compstruc.2003.10.002
  17. Leung, A.Y.T., Zhu, B., Zheng, J.J. and Yang, H. (2004), 'Analytic trapezoidal Fourier p-element for vibrating plane problems', J. Sound Vib., 271(1-2), 67-81 https://doi.org/10.1016/S0022-460X(03)00263-3
  18. Liew, K.M. and Lam, K.Y. (1991), 'A set of orthogonal plate functions for flexural vibration of regular polygonal plates', J. Vib. Acoustics, 113(3), 182-186 https://doi.org/10.1115/1.2930167
  19. Liew, K.M., Xiang, Y. and Kitipomchai, S. (1993), 'Transverse vibration of thick rectangular plates-I. Comprehensive sets of boundary conditions', Comput. Struct., 49(1), 1-29 https://doi.org/10.1016/0045-7949(93)90122-T
  20. Papadrakakis, M. and Babilis, G.P. (1994), 'Solution techniques for the p-version of the adaptive finite element method', Int. J. Numer. Meth. Eng, 37, 1413-1431 https://doi.org/10.1002/nme.1620370809
  21. Qiao, P.Z., Yang, M.J. and Mosallam, A.S. (2004), 'Impact analysis of I-Lam sandwich system for over-height collision protection of highway bridges', Eng Struct., 26, 1003-1012 https://doi.org/10.1016/j.engstruct.2004.03.004
  22. Ruzzene, M., Fasana, A., Garibaldi, L. and Piombo, B. (1997), 'Natural frequencies and damping identification using wavelet transform: Application to real data', Mechanical Systems and Signal Processing, 11(2), 207-218 https://doi.org/10.1006/mssp.1996.0078
  23. Tin-Loi, F. and Ngo, N.S. (2003), 'Performance of the p-version finite element method for limit analysis', Int. J. Mech. Sci., 45, 1149-1166 https://doi.org/10.1016/j.ijmecsci.2003.08.004
  24. Wang, C.M., Reddy, J.N. and Lee, K.H. (2000), Shear Deformable Beams and Plates, Elsevier, Oxford, U.K
  25. Woo, K.S., Hong, C.H., Basu, P.K. and Seo, C.G (2003), 'Free vibration of skew Mindlin plates by p-version of F.E.M', J. Sound Vib., 268(4), 637-656 https://doi.org/10.1016/S0022-460X(02)01536-5
  26. Wu, K.Q. and Yu, T.X, (2001), 'Simple dynamic models of elastic-plastic structures under impact', Int. J. Impact Eng, 25, 735-754 https://doi.org/10.1016/S0734-743X(01)00017-3
  27. Zhu, B. (2005), 'p-version finite elements and applications in structural impact and damage detection', Ph. D Thesis, City University of Hong Kong, Hong Kong, China
  28. Zienkiewicz, O.C. and Taylor, R.L. (2000), The Finite Element Method. 5th Edition, Vol. 1, ButterworthHeinemann, Oxford, 276-304

Cited by

  1. Analysis of failure of a bridge foundation under rock impact vol.7, pp.1, 2012, https://doi.org/10.1007/s11440-011-0156-1
  2. Linear and nonlinear vibration of non-uniform beams on two-parameter foundations using p-elements vol.36, pp.5, 2009, https://doi.org/10.1016/j.compgeo.2008.12.006
  3. Dimensional pounding response analysis for adjacent inelastic MDOF structures based on modified Kelvin model vol.79, pp.3, 2006, https://doi.org/10.12989/sem.2021.79.3.347