DOI QR코드

DOI QR Code

Analysis of Differentially Expressed Proteins in Bovine Longissimus Dorsi and Biceps Femoris Muscles

  • Kim, S.M. (Department of Biology, Kyung Hee University) ;
  • Park, M.Y. (Department of Biology, Kyung Hee University) ;
  • Seo, K.S. (Animal Genetic Evaluation Division, National Livestock Research Institute, RDA) ;
  • Yoon, D.H. (Animal Genomics & Bioinformatics Division, National Livestock Research Institute, RDA) ;
  • Lee, H.-G. (School of Agricultural Biotechnology, Seoul National University) ;
  • Choi, Y.J. (School of Agricultural Biotechnology, Seoul National University) ;
  • Kim, S.H. (Department of Biology, Kyung Hee University)
  • Received : 2005.11.11
  • Accepted : 2006.04.06
  • Published : 2006.10.01

Abstract

Skeletal muscle contains slow and fast twitch fibers. These skeletal muscle fibers express type I and type II myosin, respectively, and these myosin isoenzymes have different ATPase activity. The aim of this study was to investigate protein profiles of bovine skeletal muscles by proteomic analysis. Fifty seven spots of distinct proteins were excised and characterized. The expression of sixteen spots was differed in longissimus dorsi muscle with a minimal 2-fold change compared to biceps femoris muscle. The majority of differentially expressed proteins belonged to metabolic regulation-related proteins such as glyceraldehyde 3-phosphate dehydrogenase, triosephosphate isomerase and carbonic anhydrase 3. The real time-PCR assay confirmed an increase or induction of specific genes: RGS12TS isoform, GAPDH, triosephosphate isomerase and carbonic anhydrase. These results suggest that the expression of metabolic proteins is under a specific control system in different bovine skeletal muscle. These observations could have significant implications for understanding the physiological regulation of bovine skeletal muscles.

Keywords

References

  1. Ashmore, C. R., G. Tompkins and L. Doerr. 1972. Postnatal development of muscle fiber types in domestic animals. J. Anim. Sci. 34:37-41 https://doi.org/10.2527/jas1972.34137x
  2. Barany, M. 1967. ATPase activity of myosin correlated with speed of muscle shortening. J. Gen. Physiol. 50:197-216 https://doi.org/10.1085/jgp.50.6.197
  3. Brooke, M. H. and K. Kaiser. 1970. Muscle fiber type: how many and what kind ? Arch. Neurol. 23:369 https://doi.org/10.1001/archneur.1970.00480280083010
  4. Cabiscol, E. and R. L. Levine. 1996. The phosphaase activity of carbonic anhydrase III is reversibly regulated by glutathiolation. Proc. Natl. Acad. Sci. USA 93:4170-4174
  5. Chegwidden, W. R., N. D. Carter and Y. H. Edwards. 2000. The carbonic anhydrases: new horizons. Birkhauser Verlag, Boston, USA
  6. Cornforth, D. P., A. L. Hecker, D. A. Cramer, A. A. Spindler and M. M. Mathias. 1980. Maturity and its relationship to muscle characteristics of cattle. J. Anim. Sci. 50:75-80 https://doi.org/10.2527/jas1980.50175x
  7. Dubois, D. C. and R. R. Almon. 1984. Glucocorticoid sites in skeletal muscle: Adrenalectomy, maturation, fiber type and sex. Am. J. Physiol. 247:118
  8. Dubowitz, V. 1960. A comparative histochemical study of oxidative enzyme and phosphorylase activity in skeletal muscle. Histochemie 2:105-117 https://doi.org/10.1007/BF00744575
  9. Hwang, I. H. 2004. Application of gel-based proteome analysis techniques to studying post-mortem proteolysis in meat. Asian-Aust. J. Anim. Sci. 17:1296-1302 https://doi.org/10.5713/ajas.2004.1296
  10. Jeukendrup, A. E. 2002. Regulation of fat metabolism in skeletal muscle. Ann. NY. Acad. Sci. 967:217-235 https://doi.org/10.1111/j.1749-6632.2002.tb04278.x
  11. Jones, M. B., H. Krutzsch, H. Shu, Y. Zhao, L. A. Liotta, E. C. Kohn and E. F. Petricoin. 2002. Proteomic analysis and identification of new biomarkers and therapeutic targets for invasive ovarian cancer. Proteomics. 2:76-84 https://doi.org/10.1002/1615-9861(200201)2:1<76::AID-PROT76>3.0.CO;2-O
  12. Jung, K. C., S. L. Yu, Y. J. Lee, K. D. Choi, J. S. Choi, Y. H. Kim, B. G. Jang, S. H. Kim, D. H. Hahm and J. H. Lee. 2005. Muscle proteome analysis for the effect of Panax Ginseng extracts in chicken: Identification of proteins using peptide mass fingerprinting. Asian-Aust. J. Anim. Sci. 18:922-926 https://doi.org/10.5713/ajas.2005.922
  13. Kichofer, K. S., C. R. Calkins and B. L. Gwartney. 2002. Fibertype composition of muscles of the beef chuck and round. J. Anim. Sci. 80:2872-2878 https://doi.org/10.2527/2002.80112872x
  14. Kim, G., J. Selengut and R. L. Levine. 2000. Carbonic anhydrase III: the phosphatase activity is extrinsic. Arch. Biochem. Biophys. 377:334-340 https://doi.org/10.1006/abbi.2000.1793
  15. Larzul, C., L. Lefaucheur, P. Ecolan, J. Gogue, A. Talmant, P. Sellier, P. Le Roy and G. Monin. 1997. Phenotypic and genetic parameters for longissimus muscle fiber characteristics in relation to growth, carcass, and meat quality traits in large white pigs. J. Anim. Sci. 75:3126-3137
  16. Lefaucheur, L., C. Peuch, B. Barenton and P. Vigneron. 1986. Characterization of insulin binding to slices of slow and fast twitch skeletal muscles in the rabbit. Horm. Metab. Res. 18:725 https://doi.org/10.1055/s-2007-1012420
  17. Pearson, A. M. and R. B. Young. 1989. Muscle and meat biochemistry, Academic press, San Diego. CA. USA
  18. Rieder, S. V. and I. A. Rose. 1959. The mechanism of the triosephosphate isomerase reaction. J. Biol. Chem. 234:1007-1010
  19. Scheidegger, K., M. O'Connell, D. C. Robbins and E. Danforth. 1984. Effects of chronic beta-receptor stimulation on sympathetic nervous system activity, energy expenditure and thyroid hormones. J. Clin. Endocrinol. Metab. 58:895 https://doi.org/10.1210/jcem-58-5-895
  20. Shackelford, S. D., T. L. Wheeler and M. Koohmaraie. 1995. Relationship between shear force and trained sensory panel tenderness ratings of 10 major muscles from Bos indicus and Bos Taurus cattle. J. Anim. Sci. 73:3333-3340 https://doi.org/10.2527/1995.73113333x
  21. Solomon, M. B., R. L. West and J. F. Hentges. 1986. Growth and muscle development characteristics of purebred Angus and Brahman bulls. Growth 50:51-67
  22. Vestergaad, M., K. Sejrsen and S. Klastrup. 1994. Growth, `composition and eating quality of longissimus dorsi from young bulls fed the beta-agonist cimaterol at consecutive developmental stages. Meat Sci. 38:55 https://doi.org/10.1016/0309-1740(94)90095-7
  23. Webster, B., S. R. Vigna, T. Paquette and D. J. Koerker. 1986. Beta-adrenergic modulation of insulin binding in skeletal muscle. Am. J. Physiol. 150:198
  24. Yan, J. X., R. A. Harry, R. Wait, S. Y. Welson, P. W. Emery, V. R. Preedy and M. J. Dunn. 2001. Separation and identification of rat skeletal muscle proteins using two-dimensional gel electrophoresis and mass spectrometry. Proteomics. 1:424-34 https://doi.org/10.1002/1615-9861(200103)1:3<424::AID-PROT424>3.0.CO;2-Y

Cited by

  1. Integrated data mining of transcriptomic and proteomic datasets to predict the secretome of adipose tissue and muscle in ruminants vol.12, pp.9, 2016, https://doi.org/10.1039/C6MB00224B
  2. Expression Analysis of miRNAs in Porcine Fetal Skeletal Muscle on Days 65 and 90 of Gestation vol.21, pp.7, 2006, https://doi.org/10.5713/ajas.2008.70521
  3. Proteomic Approach Analysis of Mammary Membrane Proteins Expression Profiles in Holstein Cows vol.22, pp.6, 2006, https://doi.org/10.5713/ajas.2009.80472
  4. Proteomics Comparison of Longissimus Muscle between Hanwoo and Holstein Cattle vol.30, pp.3, 2006, https://doi.org/10.5851/kosfa.2010.30.3.385
  5. The Influence of Maternal Dietary Intake During Mid-Gestation on Growth, Feedlot Performance, miRNA and mRNA Expression, and Carcass and Meat Quality of Resultant Offspring vol.5, pp.1, 2006, https://doi.org/10.22175/mmb.11538