DOI QR코드

DOI QR Code

Mitochondrial DNA Variation and Genetic Relationships in Japanese and Korean Cattle

  • Sasazaki, S. (Graduate School of Science and Technology, Kobe University) ;
  • Odahara, S. (Graduate School of Science and Technology, Kobe University) ;
  • Hiura, C. (Kochi Prefectural Livestock Experiment Station) ;
  • Mukai, F. (Graduate School of Science and Technology, Kobe University) ;
  • Mannen, H. (Graduate School of Science and Technology, Kobe University)
  • Received : 2006.01.10
  • Accepted : 2006.04.12
  • Published : 2006.10.01

Abstract

The complete mtDNA D-loop regions of Japanese and Korean cattle were analyzed for their mtDNA variations and genetic relationships. Sequencing the 30 Higo substrain and 30 Tosa substrain of Japanese Brown, respectively 12 and 17 distinct Bos haplotypes were identified from 77 polymorphic nucleotide sites. In order to focus on the relationships among Japanese and Korean cattle, two types of phylogenetic tree were constructed using individual sequences; first, a neighbor-joining tree with all sequences and second, reduced median networks within each Japanese and Korean cattle group. The trees revealed that two major mtDNA haplotype groups, T3 and T4, were represented in Japanese and Korean cattle. The T4 haplogroup predominated in Japanese Black and Japanese Brown cattle (frequency of 43.3-66.7%), while the T3 haplogroup was predominant (83.3%) and T4 was represented only twice in the Korean cattle. The results suggested that the mitochondrial origins of Japanese Brown were Japanese ancient cattle as well as Japanese Black in despite of the considerable introgression of Korean and European cattle into Japanese Brown.

Keywords

References

  1. Anderson, S., M. H. L. Debrujin, A. R. Coulson, I. C. Eperon and F. Sanger. 1982. Complete sequence of bovine mitochondrial DNA. J. Mol. Biol. 156:683-717 https://doi.org/10.1016/0022-2836(82)90137-1
  2. Bandelt, H. J. and P. R. Forster. 1999. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16:37- 48 https://doi.org/10.1093/oxfordjournals.molbev.a026036
  3. Felius, M. 1995. Cattle Breeds-An Encyclopedia. Misset, Doetinchem
  4. Jeon, G. J., H. Y. Chung, J. G. Choi, M. S. Lee, C. W. Lee, J. J. Park, J. M. Ha, H. K. Lee and H. H. Sung. 2005. Relationship between Genetic Variants of Mitochondrial DNA and Growth Traits in Hanwoo Cattle. Asian-Aust. J. Anim. Sci. 18:301-307 https://doi.org/10.5713/ajas.2005.301
  5. Kumar, S., K. Tamura, I. B. Jakobsen and M, Nei. 2001. MEGA2: Molecular Evolutionary Genetics Analysis Software. Arizona State University, Tempe, AZ, USA
  6. Liu, Z. G., C. Z. Lei, J. Luo, C. Ding, G. H. Chen, H. Chang, K. H. Wang, X. X. Liu, X. Y. Zhang, X. J. Xiao and S. L. Wu. 2004. Genetic Variability of mtDNA Sequences in Chinese Native Chicken Breeds. Asian-Aust. J. Anim. Sci. 17:903-909 https://doi.org/10.5713/ajas.2004.903
  7. MacHugh, D. E., M. D. Shriver, R. T. Loftus, P. Cunningham and D. G. Bradley. 1997. Microsatellite DNA variation and the evolution, domestication and phylogeography of taurine and zebu cattle (Bos taurus and Bos indicus). Genet. 146:1071- 1086
  8. Mannen, H., M. Kohno, Y. Nagata, S. Tsuji, D. G. Bradley, J. S. Yeo, D. Nyamsamba, Y. Zagdsuren, M. Yokohama, K. Nomura and T. Amano. 2004. Independent mitochondrial origin and historical genetic differentiation in North Eastern Asian cattle. Mol. Phylogenet. Evol. 32:539-544 https://doi.org/10.1016/j.ympev.2004.01.010
  9. Mannen, H., S. Tsuji, R. T. Loftus and D. G. Bradley. 1998. Mitochondrial DNA variation and evolution in Japanese Black cattle (Bos taurus). Genet. 150:1169-1175
  10. Mizuma Y, T. Ino, and I. Okada. 1982. Animal Breeding. 'Livestock Species and Breeds' pp. 28. Asakura-Shoten. Tokyo
  11. Mukai, F., S. Tsuji, K. Fukazawa, S. Ohtagaki and Y. Nambu. 1989. History and population structure of a closed strain of Japanese Black cattle. J. Anim. Breed. Genet. 106:254-264 https://doi.org/10.1111/j.1439-0388.1989.tb00239.x
  12. Namikawa, T. 1980. Genetical aspect of domestication and phylogeny in the cattle. Jap. J. Zoothech. Sci. 49:817-827
  13. Ogawa, Y., M. Daigo and H. Amasaki. 1989. Craniometrical estimation of the native Japanese Mishima cattle. Anat. Anz. Jena. 168:197-203
  14. Tamura, K. and M. Nei. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10:512- 526
  15. Thompson, J. D., D. G. Higgins and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680 https://doi.org/10.1093/nar/22.22.4673
  16. Troy, C. S., D. Machugh, J. F. Balley, D. A. Magee, R. T. Loftus, P. Cunningham, A. T. Chamberlain, B. C. Sykes and D. G. Bradley. 2001. Genetic evidence for Near-Eastern origins of European cattle. Nature 410:1088-1091 https://doi.org/10.1038/35074088

Cited by

  1. Bos indicus type of growth hormone receptor gene is retained in Japanese Black cattle vol.123, pp.6, 2006, https://doi.org/10.1111/j.1439-0388.2006.00617.x
  2. Cytochrome b Genetic Diversity and Maternal Origin of Chinese Domestic Donkey vol.48, pp.7-8, 2010, https://doi.org/10.1007/s10528-010-9345-0
  3. Inter- and intra-population genetic divergence of East Asian cattle populations: focusing on Korean cattle vol.36, pp.3, 2014, https://doi.org/10.1007/s13258-013-0146-9
  4. Haplogroup Classification of Korean Cattle Breeds Based on Sequence Variations of mtDNA Control Region vol.29, pp.5, 2016, https://doi.org/10.5713/ajas.15.0692
  5. Estimating chromosomal genetic diversity of Kuchinoshima feral cattle using high density SNP chip vol.87, pp.3, 2016, https://doi.org/10.2508/chikusan.87.219
  6. Low mitochondrial DNA diversity of Japanese Polled and Kuchinoshima feral cattle vol.88, pp.5, 2017, https://doi.org/10.1111/asj.12716
  7. Y chromosome pp.13443941, 2018, https://doi.org/10.1111/asj.13128
  8. Genetic Diversity and Phylogenetic Analysis of the mtDNA D-loop Region in Tibetan Sheep vol.20, pp.3, 2006, https://doi.org/10.5713/ajas.2007.313
  9. Two Maternal Lineages Revealed by Mitochondrial DNA D-loop Sequences in Chinese Native Water Buffaloes (Bubalus bubalis) vol.20, pp.4, 2006, https://doi.org/10.5713/ajas.2007.471
  10. Proteomic Comparison between Japanese Black and Holstein Cattle by Two-dimensional Gel Electrophoresis and Identification of Proteins vol.20, pp.5, 2007, https://doi.org/10.5713/ajas.2007.638
  11. African Maternal Origin and Genetic Diversity of Chinese Domestic Donkeys vol.20, pp.5, 2006, https://doi.org/10.5713/ajas.2007.645
  12. Genetic Relationships among Different Breeds of Chinese Gamecocks Revealed by mtDNA Variation vol.22, pp.8, 2006, https://doi.org/10.5713/ajas.2009.80660
  13. DNA Types of Aspermic Fasciola Species in Japan vol.72, pp.10, 2010, https://doi.org/10.1292/jvms.10-0104
  14. Discrimination of Korean Native Chicken Populations Using SNPs from mtDNA and MHC Polymorphisms vol.24, pp.12, 2011, https://doi.org/10.5713/ajas.2011.11144
  15. Molecular Analysis of Aspermic Fasciola Flukes from Korea on the Basis of the Nuclear ITS1 Region and Mitochondrial DNA Markers and Comparison with Japanese Aspermic Fasciola Flukes vol.74, pp.7, 2006, https://doi.org/10.1292/jvms.11-0523
  16. Species composition and environmental adaptation of indigenous Chinese cattle vol.7, pp.None, 2006, https://doi.org/10.1038/s41598-017-16438-7
  17. The rare mtDNA haplogroup P observed in Japanese Holstein cattle vol.46, pp.2, 2006, https://doi.org/10.5924/abgri.46.49