DOI QR코드

DOI QR Code

Association between SNPs within Prolactin Gene and Milk Performance Traits in Holstein Dairy Cattle

  • He, Feng (Department of Animal Genetics and Breeding, College of Animal Science and Technology Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture China Agricultural University) ;
  • Sun, Dongxiao (Department of Animal Genetics and Breeding, College of Animal Science and Technology Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture China Agricultural University) ;
  • Yu, Ying (Department of Animal Genetics and Breeding, College of Animal Science and Technology Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture China Agricultural University) ;
  • Wang, Yachun (Department of Animal Genetics and Breeding, College of Animal Science and Technology Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture China Agricultural University) ;
  • Zhang, Yuan (Department of Animal Genetics and Breeding, College of Animal Science and Technology Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture China Agricultural University)
  • Received : 2006.01.26
  • Accepted : 2006.03.02
  • Published : 2006.10.01

Abstract

Prolactin plays an important role in mammary gland development, milk section initiation and maintenance of lactation, so the bovine prolactin gene is considered as a potential quantitative trait locus affecting milk performance traits in dairy cattle. In this study, to determine the association between prolactin and milk performance traits, the genetic polymorphisms of a part of the prolactin gene were detected in a population of 649 cows of Chinese Holstein Dairy Cattle. Three SNPs in the promoter and one SNP in the intron1 of prolactin were identified, which was A/C (-767), G/T (-485), C/A (-247), and C/T (427), respectively. Statistical results indicated that one of SNP within promote, CHBP2, was significantly associated with milk yield (p<0.01), fat yield (p<0.05), protein yield (p<0.01), and protein percentage (p<0.05). The cows with genotype BB of CHBP2 had significantly higher milk yield (p<0.01), fat yield (p<0.05), and protein yield (p<0.01) than those of cows with genotype AA, while cows with genotype AA showed the highest protein percentage (p<0.05). In addition, based on the nine major haplotypes constructed from the four SNPs, the association analysis between diplotypes and milk performance trait was carried out. Results showed that the least square mean for fat yield of diplotype H2H8 was significantly higher than those of other eleven diplotypes (p<0.05). Our findings implied that CHBP2 and H2H8 of prolactin would be useful genetic markers in selection program on milk performance traits in Holstein Dairy Cattle.

Keywords

References

  1. Altschul, S. F., W. Gish, W. Miller, E. W. Myers and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403- 410 https://doi.org/10.1016/S0022-2836(05)80360-2
  2. Bajic, V. B., V. Choudhary and C. K. Hock. 2004. Content analysis of the core promoter region of human genes. In Silico Biol. 4(2):109-125
  3. Camper, S., D. N. Luck, Y. Yao, R. P. Woychik, R. G. Goodwin, R. H. Lyons Jr. and F. M. Rottman. 1984. Characterization of the bovine prolactin gene. DNA 3:237-249 https://doi.org/10.1089/dna.1.1984.3.237
  4. Cao, X., Q. Wang, J. B. Yan, F. K. Yang, S. Z. Huang and Y. T. Zeng. 2002. Molecular cloning and analysis of bovine prolactin full-long genomic as well as cDNA sequences. Yi Chuan Xue Bao 29(9):768-73
  5. Chrenek, P., J. Huba, M. Oravcova, L. Hetenyi, D. Peskovicova and J. Bulla. 1999. Genotypes of bGH and bPRL genes in relationships to milk production. EAAP-50th Annual Meeting, Zurich: 40
  6. Chrenek, P., D. Vasicek, M. Bauerova and J. Bulla. 1998. Simultaneous analysis of bovine growth hormone and prolactin alleles by multiplex PCR and RFLP. Czech J. Anim. Sci. 43:53-55
  7. Chung, E. R. and W. T. Kim. 1997. DNA polymorphism of prolactin gene in diary cattle. Kor. J. Diary Sci. 19:105-112
  8. Chung, E. R., T. J. Rhin and S. K. Han. 1996. Association between PCR-RFLP markers of growth hormone and prolactin genes and production traits in dairy cattle. Kor. J. Anim. Sci. 38:321- 336
  9. Cowan, C. M., M. R. Dentine, R. L. Ax and L. A. Schuler. 1989. Restriction fragment length polymorphism associated with growth hormone and prolactin genes in Holstein bulls: evidence for new growth hormone allele. Anim. Genet. 20:157-165
  10. Daly, M. J., D. Rioux and S. F. Schaffner. 2001. High-resolution haplotype structure in the human genome. Nat. Genet. 29:229- 232 https://doi.org/10.1038/ng1001-229
  11. Day, R. N., T. C. Voss, J. F. Enwright, C. F. Booker, A. Periasamy, and F. Schanfele. 2003. lmaging the localized protein interactions between Pit-1 and the CCAAT/enhancer binding proteill filpha in the living pituitary cell nucleus. Mol. Endocrinol. 17:333-345 https://doi.org/10.1210/me.2002-0136
  12. Dybus, A. 2002. Associations of growth hormone GH and prolactin PRL genes polymorphism with milk production traits in Polish Black and White cattle. Anim. Sci. Pap Rep 20:203- 212
  13. Enwright, J. F., M. A. Kawecki-Crook, T. C. Voss, F. Schaufele, and R. N. Day. 2003. A PIT-1 homeodomain mutant blocks the intranuclear recruitment of the CCAAT/enhancer binding protein alpha required for prolactin gene transcription. Mol. Endocrinol. 17:209-222 https://doi.org/10.1210/me.2001-0222
  14. Frisch, H., C. Kim, G. Hausler and R. Pfaffle. 2000. Combined Pituitary hormone deficiency and Pituitary hypoplasia due to a mutation of the pit-1 gene. Clin. Endocrinol. 52:661-665 https://doi.org/10.1046/j.1365-2265.2000.00942.x
  15. Frumkin, A., R. Haffner, E. Shapira, N. Tarcic, Y. Gruenbaum and A. Fainsod. 1993. The chicken CdxA homeobox gene and axial positioning during gastrulation. Develop. 118(2):553-562
  16. Frumkin, A., G. Pillemer, R. Haffner, N. Tarcic, Y. Gruenbaum and A. Fainsod. 1994. A role for CdxA in gut closure and intestinal epithelia differentiation. Develop. 120(2):253-263
  17. Hallerman, E. M., J. L. Theilmann, J. S. Beckmann, M. Soller and J. E. Womack. 1988. Mapping of bovine prolactin and rhodopsin genes in hybrid somatic cells. Anim. Genet. 19:123- 131 https://doi.org/10.1111/j.1365-2052.1988.tb00798.x
  18. Hart, G. L., J. Bastiaansen, M. R. Dentine and B. W. Kirkpatrick. 1993. Detection of a four-allele single strand conformation polymorphism (SSCP) in the bovine prolactin gene 5' flank. Anim. Genet. 24:149
  19. Hayashi, K. and D. W. Yandell. 1993. How sensitive is PCRSSCP? Hum Mutat 2:338-346 https://doi.org/10.1002/humu.1380020503
  20. Hiramatsu, H. and S. Yasugi. 2004. Molecular analysis of the determination of developmental fate in the small intestinal epithelium in the chicken embryo. Int. J. Dev. Biol. 48(10):1141-1148 https://doi.org/10.1387/ijdb.041886hh
  21. Horseman, N. D., W. Zhao, E. Montecino-Rodriguez, M. Tanaka, K. Nakashima and S. J. Engle. 1997. Defective mammopoiesis, but normal hematopoiesis, in mice with a targeted disruption of the prolactin gene. EMBO J. 16:6926-6935 https://doi.org/10.1093/emboj/16.23.6926
  22. Kim, J. H., B. H. Choi, H. T. Lim, E. W. Park, S. H. Lee, B. Y. Seo, I. C. Cho, J. G. Lee, S. J. Oh and J. T. Jeon. 2005. Characterization of Phosphoinositide-3-kinase, Class 3 (PIK3C3) Gene and Association Tests with Quantitative Traits in Pigs. Asian-Aust. J. Anim. Sci. 18:1701 https://doi.org/10.5713/ajas.2005.1701
  23. Knoblauch, H., A. Bauerfeind, C. Krahenbuhl, A. Daury, K. Rohde, S. Bejanin, L.Essioux, H. Schuster, F. C. Luft and J. G. Reinch. 2002. Common haplotypes in five genes influence genetic variance of LDL and HDL cholesterol in the general population. Hum. Mol. Genet. 11:1477-1485 https://doi.org/10.1093/hmg/11.12.1477
  24. Kurima, K., J. A. Proudman, M. E. EIHalawani and E. A. Wong. 1995. The turkey Prolactin-encoding gene and its regulatory region. Gene. 156:309-310 https://doi.org/10.1016/0378-1119(95)00032-2
  25. Maurer, R. A. and A. C. Notides. 1987. Identification of an estrogen responsive element from the 5'-fianking region of the rat prolactin gene. Mol. Cell. Bio. 7:4247-4254 https://doi.org/10.1128/MCB.7.12.4247
  26. Meng, H., J. G. Zhao, Z. H. Li and H. Li. 2005. Single Nucleotide Polymorphisms on Peroxisome Proliferator-activated Receptor Genes Associated with Fatness Traits in Chicken. Asian-Aust. J. Anim. Sci. 18:1221 https://doi.org/10.5713/ajas.2005.1221
  27. Mitra, A., P. Schlee, C. R. Balakrishnan and F. Pirchner. 1995. Polymorphism at growth hormone and prolactin loci in Indian cattle and buffalo. J. Anim. Breed Genet. 112:71-74 https://doi.org/10.1111/j.1439-0388.1995.tb00543.x
  28. Olivie, M. 2003. A haplotype map of the human genome. Physiol. Genom. 13:3-9 https://doi.org/10.1152/physiolgenomics.00178.2002
  29. Orita, M., H. Iwahana, H. Kanazawa, K. Hayashi and T. Sekiya. 1989. Detection of polymorphisms of human DNA by gel electrophoresis as single strand conformation polymorphisms. Proc. Natl. Acad. Sci. USA 86:2766-2770
  30. Pawel Brym and Stanislaw Kamiñski. 2005. Nucleotide sequence polymorphism within exon 4 of the bovine prolactin gene and its associations with milk performance traits. J. Appl. Genet. 45(2):179-185
  31. Putt, W., J. Palmen, V. Nicaud, D. A. Tregouet, N. Tahri-Daizadeh, D. M. Flavell, S. E. Humphries and P. J. Talmud. 2004. Variation in USFI shows haplotype effects, gene: gene and gene: environment associations with glucose and lipid parameters in the EuroPean atherosclerosis research 339 study II. Hum. Mol. Genet.13:1587-1597 https://doi.org/10.1093/hmg/ddh168
  32. Qu, L. J., X. Y. Li, G. Q. Wu and N. Yang. 2005. Efficient and sensitive method of DNA silver staining in polyacrylamide gel. Electrophoresis 26:99-101 https://doi.org/10.1002/elps.200406177
  33. Sachidanandam, R., D. Weissman, S. C. Schmidt, J. M. Kakol, L. D. Stein, G. Marth, S. Sherry, J. C. Mullikin, B. J. Mortimore, D. L. Willy, S. E. Hunt, C. G. Cole, P. C. Coggill, C. M. Rice, Z. Ning, J. Rogers, D. R. Bentley, P. Y. Kwok, E. R. Mardis, R. T. Yeh, B. Schultz, L. Cook, R. Davenport, M. Dante, L. Fulton, L. Hillier, R. H. Waterston, J. D. Mcpherson, B. Gilmfifl, D. Schaffner, V. W. J. Etten, D. Reich, J. Higgins, M. J. Daly, B. Blumenstiel, J. Baldwin, N. Stange--Thomann, M. C. Zody, L. Linton, E. S. Lander and D. Altshuler. 2001. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nat. 409:928-933 https://doi.org/10.1038/35057149
  34. Sasavage, N. L., J. H. Nilson, S. Horowitz and F. M. Rottman. 1982. Nucleotide sequence of bovine prolactin messenger RNA. J. Biol. Chem. 257:678-681
  35. Stephens, J. C., J. A. Schneider, D. A. Tanguay, J. Choi, T. Acharya, S. E. Stanley, R. Jiang, C. J. Messer, A. Chew, J. H. Han, J. Duan, J. L. Carr, M. S. Lee, B. Koshy, A. M. Kumar, G. Zhang, W. R. Newell, A. Windemuth, C. Xu, T. S. Kalbfleisch, S. L. Shaner, K. Arnold, V. Schulz, C. M. Drysdale, K. Nandabalan, R. S. Judson, G. Ruano and G. F. Vovis. 2001a. Haplotype variations and linkage disequilibrium in 313 human genes. Sci. 293:489-493 https://doi.org/10.1126/science.1059431
  36. Stephens, M., N. Smith and P. Donnelly. 2001b. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 68:978-989 https://doi.org/10.1086/319501
  37. Udina, I. G., S. O. Turkova, M. V. Kostuchenko, L. A. Lebedeva and G. E. Sulimova. 2001. Polymorphism of bovine prolactin gene, microsatellites. PCR-RFLP. Russian J. Genet. 4:407-411
  38. Yoon, D. H., B. H. Cho, B. L. Park, Y. H. Choi, H. S. Cheong, H. K. Lee, E. R. Chung, I. C. Cheong and H. D. Shin. 2005. Highly Polymorphic Bovine Leptin Gene. Asian-Aust. J. Anim. Sci. 18:1548 https://doi.org/10.5713/ajas.2005.1548
  39. Zhang, W. H., A. Collins and N. E. Morton. 2004. Does haplotype diversity predict power for association mapping of disease susceptibility? Hum. Genet. 115:157-164

Cited by

  1. Polymorphisms within promoter of Japanese flounder (Paralichthys olivaceus) ovary cytochrome P450-c19 (CYP19a) gene associated with reproductive traits vol.35, pp.3, 2009, https://doi.org/10.1007/s10695-008-9237-y
  2. Database of cattle candidate genes and genetic markers for milk production and mastitis vol.40, pp.6, 2009, https://doi.org/10.1111/j.1365-2052.2009.01921.x
  3. Mutations in exons of the CYP17-II gene affect sex steroid concentration in male Japanese flounder (Paralichthys olivaceus) vol.11, pp.1, 2012, https://doi.org/10.1007/s11802-012-1865-2
  4. Development of a Novel, Anti-idiotypic Monoclonal Anti-prolactin Antibody That Mimics the Physiological Functions of Prolactin vol.29, pp.4, 2016, https://doi.org/10.5713/ajas.15.0541
  5. Polymorphism Identification, RH Mapping and Association of ${\alpha}$-Lactalbumin Gene with Milk Performance Traits in Chinese Holstein vol.20, pp.9, 2007, https://doi.org/10.5713/ajas.2007.1327
  6. Association between PCR-RFLP Polymorphisms of Five Gene Loci and Milk Traits in Chinese Holstein vol.20, pp.2, 2006, https://doi.org/10.5713/ajas.2007.166
  7. Identification of single nucleotide polymorphism cytochrome P450-c19a and its relation to reproductive traits in Japanese flounder (Paralichthys olivaceus) vol.279, pp.1, 2006, https://doi.org/10.1016/j.aquaculture.2008.03.057
  8. Single Nucleotide Polymorphisms of the GnRHR Gene Associated with Reproductive Traits of Japanese Flounder (Paralichthys olivaceus) vol.24, pp.4, 2006, https://doi.org/10.5713/ajas.2011.10331
  9. A Study on the Effect of Prolactin Gene Variants on Milk Production Traits of Holstein Cattle vol.55, pp.4, 2006, https://doi.org/10.1134/s1022795419040082