DOI QR코드

DOI QR Code

Effects of Supplementary Copper Chelates in the Form of Methionine, Chitosan and Yeast on the Performance of Broilers

  • Lim, H.S. (Department of Animal Science, Chung-Ang University) ;
  • Paik, I.K. (Department of Animal Science, Chung-Ang University) ;
  • Sohn, T.I. (Departurement of Biotechnology, Chung-Ang University) ;
  • Kim, W.Y. (Departurement of Biotechnology, Chung-Ang University)
  • Received : 2005.12.06
  • Accepted : 2006.04.05
  • Published : 2006.09.01

Abstract

An experiment was conducted to investigate the effects of supplemental copper (Cu) chelates (methionine, chitosan and yeast) on the performance, nutrient digestibility, serum IgG level, gizzard erosion, Cu content in the liver and excreta and the level of total cholesterol in breast muscle and serum of broiler chickens. Two hundred and forty hatched broiler chickens (Ross$^{(R)}$ 208) were assigned to 4 treatments: control, 100 ppm Cu in methionine chelate (Met-Cu), 100 ppm Cu in chitosan chelate (Chitosan-Cu) and 100 ppm Cu in yeast chelate (Yeast-Cu). Each treatment had six replicates of 10 (5 males+5 females) birds each. Weight gain and feed intake tended to be higher in Cu chelate treatments than the control; weight gain was significantly higher in the Met-Cu chelate treatment and feed intake was significantly higher in the Yeast-Cu chelate treatment than the control (p<0.05). Feed/gain was significantly different between treatments in which Met-Cu was lowest followed by the control, Chitosan-Cu and Yeast-Cu. DM availability was increased by Cu chelates among which chitosan-Cu showed the highest DM availability. Cu chelates supplementation tended to increase gizzard erosion index, and Cu content in the liver was highest in the Met-Cu treatment. Supplementation of Cu chelates tended to decrease total cholesterol level in breast muscle and serum but tended to increase the level of HDL in serum. It was concluded that dietary supplementation of 100 ppm Cu in chelates increased weight gain, feed intake and DM availability. Met-Cu was more effective than Chitosan-Cu or Yeast-Cu in improving productivity of broiler chickens.

Keywords

References

  1. Aoyagi, S. and D. H. Baker. 1993a. Nutritional evaluation of copper-lysine and zinc-lysine complexs for chicks. Poult. Sci. 72:165-171 https://doi.org/10.3382/ps.0720165
  2. Aoyagi, S. and D. H. Baker. 1993b. Protective effect of copperamino acid complexes against inhibitory effects of L-cysteine and ascorbic acid. Poult. Sci. 72 (Suppl. 1):82 (Abstr) https://doi.org/10.3382/ps.0720082
  3. Association of Offical Analytical Chemist. 1990. Offical Methods of Analysis. 15th ed. Association of Official Analytical chemists, Arligton, VA
  4. Bakalli, R. I., G. M. Pesti, W. L. Ragland and V. Konjufca. 1995. Dietary copper in excess of nutritional requirement reduces plasma and breast muscle cholesterol of chickens. Poult. Sci. 74:360-365 https://doi.org/10.3382/ps.0740360
  5. Baker, D. H., J. Odle, M. A. Funk and T. M. Wieland. 1991. Bioavailability of copper in cupric oxide, cuprous, and in a copper-lysine complex. Poult. Sci. 70:177 https://doi.org/10.3382/ps.0700177
  6. Choi, K. S. 1988. Study on the chemical treatments of the natural chelating polymer andits metallic ions adsorption. Bulletin of Environmental Science. Research Institute for Environmental Sciences. Hanyang University 9:13-22
  7. Choi, Y. J. and I. K. Paik. 1989. The Effect of Supplementing Copper Sulfate on the Performance of Broiler Chicken. Kor. J. Anim. Nutr. Feed. 13:193-200
  8. Chowdhury, S. D., I. K. Paik, H. Namkung and H. S. Lim. 2004. Responses of broiler chickens to organic copper fed in the form of copper-methionine chelate. Anim. Feed Sci. Technol. 115:281-293 https://doi.org/10.1016/j.anifeedsci.2004.03.009
  9. Cromwell, G. L., T. S. Stahly and H. J. Mongue. 1989. Effect of source and level of copper on performance and liver copper stores in weanling pigs. J. Anim. Sci. 67:2996-3002 https://doi.org/10.2527/jas1989.67112996x
  10. De Rome, L. and G. M. Gadd. 1987. Measurment of copper uptake in Saccharomyces cerevisiae using a $Ca^{2+}$ selective electode. FEMS Microbiol. Lett. 43:283-287 https://doi.org/10.1111/j.1574-6968.1987.tb02159.x
  11. Downs, K. M., J. B. Hess, K. S. Macklin and R. A. Norton. 2000. Dietary zinc complex and vitamin E for reducing cellulities incidence in broiler. J. Appl. Poult. Res. 9:319-323 https://doi.org/10.1093/japr/9.3.319
  12. Fisher, C., A. P. Lauren-Jones, K. J. Hill and W. S. Hardy. 1973. The effect of copper sulfate on performance and the structure of gizzard in broilers. Br. Poult. Sci. 14:55-68 https://doi.org/10.1080/00071667308415998
  13. Guo, R., P. R. Henry, R. A. Holwerda, J. Cao, R. C. Littell, R. D. Miles, C. B. Ammerman. 2001. Chemical characteristics and relative bioavailability of supplemental organic copper sources for poultry. J. Anim. Sci. 79:1132-1141
  14. Hawbaker, J. A., V. C. Speer, V. W. Hays, J. H. Hawbaker and D. V. Catron. 1961. Effects of copper sulfate and other chemotherapeutics in growing swine rations. J. Anim. Sci. 20:163 https://doi.org/10.2527/jas1961.201163x
  15. Hong, S. J., H. S. Lim. and I. K. Paik. 2002. Effects of Cu and Zn- Methionine chelates supplementation on the performance of broiler chickens. J. Kor. Anim. Sci. Thchnol. 44(4):399-406
  16. Kim, H. K., S. H. Moon and W. Y. Kim. 2001. Determination of copper contents of yeasts cultured in media with $CuSO_4$. J. Institue of Genetic Engineering. Chungang University. 14(1):81-86
  17. Kim, S., P. Y. Chao and G. D. A. Allen. 1992. Inhibition of elevated hepatic glutathione abolishes copper deficiency cholesterolemia. FASEB J. 6:2467-2471 https://doi.org/10.1096/fasebj.6.7.1563598
  18. Klasing, K. C. 1998. Minerals. pages. 234-276 in Comparative Avian Nutrition. CAB International. New York, USA
  19. Kochkina, Z. M. and S. N. Chirkov. 2000. Influence of chitosan derivatives on the development of phage infection in the Bacillus thuringiensis culture. Microbiol. 69(2):217-219 https://doi.org/10.1007/BF02756202
  20. Lee, Y. K., I. K. Paik, M. B. Jang and T. I. Son. 2001. Preparation of chitosan mineral chelate and applecation of feed additives. J. Food Resources Institute. Chungang University. 13(1):61-68
  21. Lim, H. S. and I. K. Paik. 2003. Effects of supplementary mineral methionine chelats (Zn, Cu, Mn) on the performance and eggshell quality of laying hens. Asian-Aust. J. Anim. Sci. 16(12):1804-1808 https://doi.org/10.5713/ajas.2003.1804
  22. Lin, C. M. and D. J. Kosman. 1990. Copper uptake in wild type and copper metallothionein deficient Saccharomyces cerevisiae. J. Biol. Chem. 265:9194-9200
  23. Miyazaki, S. and Y. Umemura. 1987. Correlation between low gastric pH and the formation of gizzard erosion in chicks. Br. Poult. Sci. 28:529-534 https://doi.org/10.1080/00071668708416986
  24. Muzzarelli, R., R. Tarsi, O. Filippini, E. Glovanetti, B. Graziella and P. E. Varaldo. 1990. Antimicrobial properties of Ncarboxybutyl chitosan. Antimicrobial Agents and Chemotherapy. 34(10):2019-2023 https://doi.org/10.1128/AAC.34.10.2019
  25. National Research Council. 1994. Nutrient Requirements for Poultry. 9th. Rev. Ed. National Academy press, Washington, DC
  26. Pesti, E. G. and R. I. Bakalli. 1996. Studies on the feeding of cupric sulfate penthahydrate and cupric citrate to broiler chickens. Poult. Sci. 75:1086-1091 https://doi.org/10.3382/ps.0751086
  27. Paik, I. K., S. H. Seo, J. S. Um, M. B. Chang and B. H. Lee. 1999. Effects of supplementary copper-chelate on the performance and cholesterol level in plasma and breast muscle of broiler chickens. Asian-Aust. J. Anim. Sci. 12(5):794-798 https://doi.org/10.5713/ajas.1999.794
  28. Paik, I. K. 2001. Management of excretion phosphorus, nitrogen and pharmacological level minerals to reduce environmental pollution from animal production. Asian-Aust. J. Anim. Sci. 14(3):384-394 https://doi.org/10.5713/ajas.2001.384
  29. Roof, M. D. and D. C. Mahan. 1982. Effect of carbadox and various dietary copper level for weanling swine. J. Anim. Sci. 55:1109 https://doi.org/10.2527/jas1982.5551109x
  30. Sale, O. F., S. Marchesini, P. H. Fishman and B. Berra. 1984. A sensitive enzymatic assay for determination of cholesterol in lipid extracts. Analyt. Biochem. 142:347-350 https://doi.org/10.1016/0003-2697(84)90475-5
  31. SAS Institute. 2000. SAS system for window V 8.01. SAS Institute Inc., Cary, NC
  32. Sigma Chemical Company. 1998. The quantitative, enzymatic determination of total cholesterol concentration in serum or plasma at 500 nm. Procedure No. 352 (Rev. Ed.), St. Lous, MO
  33. Sigma Chemical Company, 1999. The quantitative isolation of the high-density lipoprotein (HDL) fraction of serum or plasma. Procedure No. 352-3, (Rev. Ed.), St. Lous, MO
  34. Steel, R. G. O. and J. H. Torrie. 1980. Principle and Procedures of Statistics. 2nd ed. McGraw-Hill Publishing Co., New York, NY
  35. Wang, J. S., S. R. Rogers and G. M. Pesti. 1987. Influence of copper and antagonism between methionine and copper supplements to chick diets. Poult. Sci. 66:1500-1507 https://doi.org/10.3382/ps.0661500
  36. Wedekind, K. J., A. E. Hortin and D. H. Baker. 1992. Methodology for assessing zinc bioavailability: efficacy estimates for zinc-methionine, zinc sulfate, and zinc oxide. J. Anm. Sci. 70:178-187 https://doi.org/10.2527/1992.701178x
  37. Wong, E. A. 1994. Stimulation of growth by intravenous injection of copper in weanling pigs. J. Anim. Sci. 72:2395-2403
  38. Yu, B., W. J. Huang and P. W. Chiou. 2000. Bioavailability of iron from amino acid complex in weanling pigs. Anim. Feed Sci. Technol. 86:39-52 https://doi.org/10.1016/S0377-8401(00)00154-1
  39. Zhous, W., E. T. Kornegay, M. D. Lindemann, J. W. G. M. Swinkels, M. K. Welton and E. A. Wong. 1994. Stimulation of growth by intravenous injection of copper in weanling pigs. J. Anim. Sci. 72:2395-2403

Cited by

  1. Novos conceitos em nutrição de aves vol.13, pp.3, 2012, https://doi.org/10.1590/S1519-99402012000300015
  2. Chitosan and its oligosaccharide derivatives (chito-oligosaccharides) as feed supplements in poultry and swine nutrition vol.99, pp.1, 2014, https://doi.org/10.1111/jpn.12222
  3. The effects of copper-glycine complexes on chemical composition and sensory attributes of raw, cooked and grilled chicken meat vol.52, pp.7, 2015, https://doi.org/10.1007/s13197-014-1510-8
  4. Effects of Dietary Copper-Methionine on Matrix Metalloproteinase-2 in the Lungs of Cold-Stressed Broilers as an Animal Model for Pulmonary Hypertension vol.172, pp.2, 2016, https://doi.org/10.1007/s12011-015-0612-0
  5. Chito-oligosaccharides as an Alternative to Antimicrobials in Improving Performance, Digestibility and Microbial Ecology of the Gut in Weanling Pigs vol.20, pp.4, 2006, https://doi.org/10.5713/ajas.2007.556
  6. The Effect of Dietary Supplementation of Fe-methionine Chelate and FeSO4 on the Iron Content of Broiler Meat vol.21, pp.1, 2006, https://doi.org/10.5713/ajas.2008.70160
  7. The Effect of Level and Period of Fe-methionine Chelate Supplementation on the Iron Content of Boiler Meat vol.21, pp.10, 2006, https://doi.org/10.5713/ajas.2008.80085
  8. Mineral Retention in Young Broiler Chicks Fed Diets Based on Wheat, Sorghum or Maize vol.23, pp.1, 2006, https://doi.org/10.5713/ajas.2010.90129
  9. Impact of biogenic nanoscale metals Fe, Cu, Zn and Se on reproductive LV chickens vol.6, pp.3, 2006, https://doi.org/10.1088/2043-6262/6/3/035017
  10. Chitosan nano-encapsulation improves the effects of mint, thyme, and cinnamon essential oils in broiler chickens vol.60, pp.5, 2019, https://doi.org/10.1080/00071668.2019.1622078
  11. Impact of dietary chitosan oligosaccharide and its effects on coccidia challenge in broiler chickens vol.60, pp.6, 2006, https://doi.org/10.1080/00071668.2019.1662887
  12. Effects of varied molecular weight of chitosan oligosaccharides on growth performance, carcass trait, meat quality, and fat metabolism in indigenous yellow-feathered chickens vol.31, pp.1, 2006, https://doi.org/10.1016/j.japr.2021.100221