DOI QR코드

DOI QR Code

Changes of Chemical Composition in Blood Serum during the Antler Growth Period in Spotted Deer (Cervus nippon)

  • Jeon, B.T. (Korea Nokyong Research Center, Konkuk University) ;
  • Kim, M.H. (Korea Nokyong Research Center, Konkuk University) ;
  • Lee, S.M. (Department of Animal Science, Sangju National University) ;
  • Thomas, David G. (Institute of Food, Nutrition and Human health, Massey University) ;
  • Moon, S.H. (Department of Animal Science, College of Natural Sciences, Konkuk University)
  • 투고 : 2005.11.01
  • 심사 : 2006.03.22
  • 발행 : 2006.09.01

초록

The aim of this study was to provide basic haematological information to allow improved nutritional management for velvet production in spotted deer (Cervus nippon) by investigating biochemical changes in blood values during the antler growth period. Blood samples, obtained from the jugular vein of twenty-five deer, were taken every 10 days from casting (day 0) to harvesting (day 50) of velvet antler. Negligible changes were found in the concentrations of total protein, albumin, and creatinine during the antler growth period, but there were significant changes in the concentrations of urea (p<0.05) and uric acid (p<0.01). The concentration of triglyceride was significantly higher (p<0.05) during the antler growth period compared to casting time, while serum high-density lipoprotein concentrations were low and remained unchanged during the antler growth period. Serum glucose concentration increased (p<0.05) significantly and was slightly changeable during antler growth. The serum concentrations of Ca and P did not fluctuate during antler growth, while those of Na, K and Cl showed slight differences between the time of casting and the rest of the antler growth period. No significant changes in concentrations of AST, ALT, amylase, CK, GGT and LDH were detected during the antler growth period. However, the concentration of ALK-P increased during antler growth reaching its peak on day 50 after casting. We found a significant difference in the concentration of ALK-P between the time of casting and the rest of the antler growth period (p<0.01). Consequently, antler growth was associated with mild changes in measured serum biochemical values with the exception of ALK-P activity in spotted deer.

키워드

참고문헌

  1. Anderson, A. E., D. E. Medin and D. C. Browden. 1972. Blood serum electrolytes in a Colorado mule deer population. Journal of Wildlife Diseases 8:183-190 https://doi.org/10.7589/0090-3558-8.2.183
  2. Audige, L. 1992. Serum biochemical values of rusa deer (Cervus timorensis rusa) in New Caledonia. Aust. Vet. J. 69:268-271 https://doi.org/10.1111/j.1751-0813.1992.tb09887.x
  3. Axelrod, J. and T. D. Reisine. 1984. Stress hormones: Their interaction and regulation. Sci. 224:452-459 https://doi.org/10.1126/science.6143403
  4. Banks, W. J. and J. W. Newbrey. 1983. Antlers development as unique modification of mammalian endochondral ossification. In: Antler Development in Cervidae (Ed. R. D. Brown). Caesar Kleberg Research Institute, Kingsville p. 279
  5. Banks, W. J., G. P. Epling, R. A. Kainer and R. W. Davis. 1968a. Antler growth and osteoporosis. I. Morphological and morphometric changes in the costal compacta during the antler growth cycle. Anatomical Record 162:387-388 https://doi.org/10.1002/ar.1091620401
  6. Banks, W. J., G. P. Epling, R. A. Kainer and R. W. Davis. 1968b. Antler growth and osteoporosis. II. Gravimetric and chemical changes in the costal compacta during antler growth cycle. Anatomical Record 162:399-400
  7. Blum, J. W., P. Kunz, C. Bachmann and J. P. Colombo. 1981. Metabolic effects of fasting in steers. Res. Vet. Sci. 31:127-129
  8. Brown, R. D., C. C. Chao and L. W. Faulkner. 1983. Hormone levels and antler development in white-tailed and sika fawns. Comparative Biochem. Physiol. 75A:385-390
  9. Brown, R. D., R. L. Cowan and K. F. Kavanaugh. 1978. Effects of pinealectomy on seasonal androgen titers, antler growth and feed intake white-tailed deer. J. Anim. Sci. 47:435-440 https://doi.org/10.2527/jas1978.472435x
  10. Chapple, R. S., A. W. English, R. C. Mulley and E. E. Lepherd. 1991. Haematology and serum biochemistry of captive unsedated chital deer (Axis axis) in Australia. Journal of Wildlife Diseases 27:396-406 https://doi.org/10.7589/0090-3558-27.3.396
  11. Chatterton, R. T. 1990. The role of stress in female reproduction: Animal and human consideration. International Journal of Fertility and Womens Medicine 35:8-13
  12. Chen, T. L., M. A. Hirst and D. Feldman. 1979. A receptor-like binding macromolecule for 1,25-dihydroxycholecalciferol in cultured mouse bone cells. J. Biol. Chem. 254:7491-7494
  13. DelGiudice, G. D., L. D. Mech, U. S. Seal and P. D. Karns. 1987. Effects of winter fasting and refeeding on white-tailed deer blood profiles. Journal of Wildlife Management 51:865-873 https://doi.org/10.2307/3801753
  14. Eems, V. D., L. Karen, R. D. Brown and C. M. Gundberg. 1988. Circulating levels of 1,25-dihydroxyvitamin D, alkaline phosphatase, hydroxyproline, and osteocalcin associated with antler growth in white-tailed deer. Acta Endocrinologica 118:407-414
  15. Eiben, B. and K. Fischer. 1984. Untersuchung verschiedener Blutparameter beim Damhirsch (Dama dama L.) im Jahresgang. Zeitschrift fur Jagdwissenschaftz 30:235-242 https://doi.org/10.1007/BF02241409
  16. Fritsch, J., B. Grosse, M. Lieberherr and S. Balsan. 1985. 1,25- Dihydroxyvitamin D3 is required for growth independent expression of alkaline phosphatase in cultured rat osteoblasts. Calcified Tissue International 37:369
  17. Gao, Z., C. Li and Y. Du. 1988. The study on the relationship between antler's growth rate, relative bone mass and circulating testosterone, estradiol, AKP in sika deer (Cervus Nippon Hortulorum). Acta Veterinaria et Zootechnica Sinica. 19:171-176
  18. Garcia, R. L., M. Sadighi, S. M. Francis, J. M. Suttie and J. S. Fleming. 1997. Expression of neurotrophin-3 in the growing velvet antler of the red deer (Cervus elaphus). J. Molecular Endocrinol. 19:173-182 https://doi.org/10.1677/jme.0.0190173
  19. Goss, R. J. 1983. Deer antlers, regeneration, function and evolution. New York, Academic Press
  20. Graham, E. A., R. K. Rainey, E. Albert, E. H. Houghton and C. A. Moyer. 1962. Biochemical investigations of deer antler growth. Part I. Alternations of deer blood chemistry resulting from osteogenesis. Journal of Bone and Joint Surgery 44A:482-488
  21. Hyvarinen, H., T. Helle, R. Vayrynen and P. Vayrynen. 1975. Seasonal and nutritional effects on serum proteins and urea concentration in the reindeer (Rangifer tarandus tarandus L.). Br. J. Nutr. 33:63-72 https://doi.org/10.1079/BJN19750009
  22. Klinger, S. R., R. J. Robel, B. A. Brown and B. E. Brent. 1986. Blood characteristics of white-tailed deer from northeastern Kansas. Journal of Wildlife Diseses 22:385-388 https://doi.org/10.7589/0090-3558-22.3.385
  23. Knox, D. P., W. A. McKelvey and D. G. Jones. 1988. Blood biochemical reference values for farmed red deer. Vet. Record 122:109-112 https://doi.org/10.1136/vr.122.5.109
  24. Larsen, T. S., H. Lgercrantz, R. A. Riemersma and A. S. Blix. 1985. Seasonal changes in blood lipids, adrenaline, noradrenaline, glucose and insulin in Norwegian reindeer. Acta Physiologica Scandinavica 124:53-59 https://doi.org/10.1111/j.1748-1716.1985.tb07631.x
  25. Lee, G. Y. and J. S. Lee. 1996. File of Clinical Pathology. Medical Publishing Ltd. pp. 95-120
  26. Lee, S. R., T. F. Shen and Y. N. Jiang. 2004. Effects of age and lines on blood parameters in laying tsalya ducks. Asian-Aust. J. Anim. Sci. 17:984-989 https://doi.org/10.5713/ajas.2004.984
  27. Manolagas, S. C., M. R. Haussler and L. J. Deftos. 1980. 1,25 Dihydroxyvitamin D3 receptor-like macromolecule in rat osteogenic sarcoma cell lines. J. Biol. Chem. 255:4414-4417
  28. Morris, J. M. and G. A. Bubenik. 1983. Seasonal levels of minerals, enzymes, nutrients and metabolic products in plasma of intact and castrated adult male white-tailed deer (Odocoileus virginianus). Comparative Biochemistry and Physiology 74A:21-28
  29. Muir, P. D., A. R. Sykes and G. K. Barrell. 1987. Growth and mineralization of antlers in red deer (Cervus elaphus). NZ. J. Agric. Res. 30:305-315 https://doi.org/10.1080/00288233.1987.10421889
  30. Nieminen, M. 1980. Nutritional and seasonal effects on the haemotology and blood chemistry in reindeer (Rangifer tarandus tarandus L.). Comparative Biochemistry and Physiology 66A:399-413
  31. Nieminen, M. and U. Heiskari. 1989. Diets of freely grazing and captive reindeer during summer and winter. Rangifer 9:17-34 https://doi.org/10.7557/2.9.1.771
  32. Reid, T. C. and N. R. Towers. 1985. Blood parameters of normal farmed deer. In Biology of Deer Production (Ed. P. F. Fennessy and K. R. Drew). Royal Society of New Zealand Bulletin 22:73-76
  33. Rick, W. 1992. Klinische Chemie und Mikroskopie. Sechste, uberarbeitete und erweitere Auflage. Springer hungarica Ltd., Debrecen
  34. Riggs, B. L. and L. J. Melton. 1986. Involutional osteoporosis. New England Journal of Medicine 314:1676-1686 https://doi.org/10.1056/NEJM198606263142605
  35. SAS. 1995. SAS User's guide, SAS Institute Inc., Cary, NC
  36. Seal, U. S., L. J. Verme and J. J. Ozoga. 1987. Dietary protein and energy effects on deer fawn metabolic patterns. J. Wildlife Management. 42:776-790 https://doi.org/10.2307/3800768
  37. Seal, U. S., L. J. Verme, J. J. Ozoga and A. W. Erickson. 1972. Nutritional effects on thyroid activity and blood of white-tailed deer. J. Wildlife Management. 36:1041-1052 https://doi.org/10.2307/3799231
  38. Sempere, A. J., R. Grimberg, C. Silve, C. Tau and M. Garabedian. 1989. Evidence for extrarenal production of 1,25-dihydroxyvitamin during physiological bone growth: In vivo and in vitro production by deer antler cells. Endocrinol. 125:2312-2319 https://doi.org/10.1210/endo-125-5-2312
  39. Shin, K. H. 1987. Research Report of Hobum Natural Drug. Institute of Natural Substance Science, Seoul National University. pp. 15-34
  40. Soveri, T., S. Sankari and M. Nieminen. 1992. Blood chemistry of reindeer calves (RANGIFER TARANDUS) during the winter season. Comparative Biochemistry and Physiology 102A:191-196
  41. Takigawa, M., M. Enomoto, E. Shirai, Y. Nishii and F. Suzuki. 1988. Differential effects of 1alpha, 25-dihydroxycholecalciferol and 24R,25-dihydroxycholecalciferol on the proliferation and the differentiation phenotype of rabbit costal chondrocytes in culture. Endocrinol. 122:831-839 https://doi.org/10.1210/endo-122-3-831
  42. Valtonen, M. and L. Eriksson. 1977. Responses of reindeer to water loding, water restriction and ADH. Acta Physiologica Scandinavica 100:340-346 https://doi.org/10.1111/j.1748-1716.1977.tb05959.x
  43. Wilson, P. R. and J. V. Pauli. 1982. Blood constituents of farmed red deer (Cervus elephus). I. Haematological values. NZ. Vet. J. 30:174-176 https://doi.org/10.1080/00480169.1982.34932
  44. Zomborszky, Z., T. Feher, Eva Horn, Eva Poteczin, S. Tubolt and M. K. Zomborszky. 1996. Comparison of some blood parameters of captured and farmed red deer (CERVUS ELAPHUS) hinds. Acta Veterinaria Hungarica 44:433-441

피인용 문헌

  1. Seasonal variations in red deer (Cervus elaphus) hematology related to antler growth and biometrics measurements vol.315A, pp.4, 2011, https://doi.org/10.1002/jez.670
  2. Avoiding Toxic Levels of Essential Minerals: A Forgotten Factor in Deer Diet Preferences vol.10, pp.1, 2015, https://doi.org/10.1371/journal.pone.0115814
  3. Effects of Antler Development Stage on Fatty acid, Vitamin and GAGs Contents of Velvet Antler in Spotted Deer (Cervus nippon) vol.20, pp.10, 2006, https://doi.org/10.5713/ajas.2007.1546
  4. Serum Biochemical Values during Antler Growth in Sika Deer (Cervus nippon) vol.20, pp.5, 2006, https://doi.org/10.5713/ajas.2007.748
  5. Effects of Red Deer Antlers on Cutaneous Wound Healing in Full-thickness Rat Models vol.21, pp.2, 2006, https://doi.org/10.5713/ajas.2008.70348
  6. Evolution of blood serum mineral composition during antler growth and rut as consequence of Cu supplementation in captive red deer and its effects in mature antler composition vol.59, pp.10, 2006, https://doi.org/10.1071/an18253