DOI QR코드

DOI QR Code

The Effect of Source of Dietary Fiber and Starch on Ileal and Fecal Amino Acid Digestibility in Growing Pigs

  • Wang, J.F. (College of Veterinary Medicine, China Agricultural University) ;
  • Wang, M. (College of Veterinary Medicine, China Agricultural University) ;
  • Lin, D.G. (College of Veterinary Medicine, China Agricultural University) ;
  • Jensen, B.B. (Department of Animal Nutrition and Physiology, Danish Institute of Agricultural Sciences, Research Center Foulum) ;
  • Zhu, Yaohong (Department of Animal Nutrition and Physiology, Danish Institute of Agricultural Sciences, Research Center Foulum)
  • Received : 2005.09.21
  • Accepted : 2006.02.08
  • Published : 2006.07.01

Abstract

Studies were carried out with a repeated $4{\times}4$ Latin square design with eight cannulated pigs fed four experimental diets to investigate the effect of dietary fiber and starch sources on apparent ileal and fecal amino acid digestibility. Each period lasted 15 d, with diet acclimation from d 1 to 7, feces collection for 48 h on d 8 to 9 and ileal sample collection for 12 h on d 13 to 15. The four experimental diets consisted mainly of cooked rice with the addition of protein sources (CON), partial replacement of cooked rice with either potato starch (PS), sugar beet pulp (SBP) or wheat bran (WB). Chromic oxide was used as an indigestible marker. With the exception of histidine, lysine and tryptophan, no differences were observed in the apparent ileal digestibility of amino acids between diets. The inclusion of potato starch did not affect the ileal and fecal amino acid digestibility. In comparison with diet CON, a decreased (p<0.05) ileal digestibility of histidine was found in pigs fed diet SBP, while the ileal digestibilities of histidine, lysine and tryptophan were decreased (p<0.05) by the inclusion of wheat bran. Inclusion of fiber sources (sugar beet pulp and wheat bran) caused a reduction (p<0.05) in the fecal amino acid digestibility and the net disappearance of amino acids in the large intestine. Of the indispensable amino acids, there was a 'net synthesis' for methionine in the large intestine of pigs when diets were supplemented with dietary fiber. The decrease in fecal amino acid digestibility with the addition of dietary fiber indicates an increase in the synthesis of bacterial protein in the large intestine.

Keywords

References

  1. AOAC. 1990. Official Methods of Analysis (15th edition). Assoc. Offic. Anal. Chem., Washington, DC
  2. Bach Knudsen, K. E. 1997. Carbohydrate and lignin contents of plant materials used in animal feeding. Anim. Feed Sci. Technol. 67:319-338 https://doi.org/10.1016/S0377-8401(97)00009-6
  3. Bach Knudsen, K. E., B. B. Jensen and I. Hansen. 1993. Digestion of polysaccharides and other major components in the small and large intestine of pigs fed on diets consisting of oat fractions rich in $\beta$-D-glucan. Br. J. Nutr. 70:537-556 https://doi.org/10.1079/BJN19930147
  4. Bech-Andersen, S. 1991. Determination of tryptophan with HPLC after alkaline hydrolysis in autoclave using alpha-methyltryptophan as internal standard. Acta Agric. Scand. 41:305-309 https://doi.org/10.1080/00015129109439913
  5. Bergner, H., O. Simon and M. Zimmer. 1975. Einflu$\beta$ des Gehaltes nativer Rohfaster in Diaten von Ratten auf die Aminosaurenresorption (Content of crude fiber in the diet as affecting the process of amino acid resorption in rats). Arch. Tierernahrung 25:95-104 https://doi.org/10.1080/17450397509423174
  6. Choct, M. and G. Annison. 1990. Anti-nutritive activity of wheat pentosans in broiler diets. Br. Poult. Sci. 31:811-821 https://doi.org/10.1080/00071669008417312
  7. Cummings, J. H., M. Roberfroid, H. Andersson, C. Barth, A. Ferro-Luzzi, Y. Ghoos, M. Gibney, K. Hermansen, W. P. T. James, O. Korver, D. Lairon, G. Pascal and A. G. S. Voragen. 1997. A new look at dietary carbohydrate: chemistry, physiology and health. Eur. J. Clin. Nutr. 51:417-423 https://doi.org/10.1038/sj.ejcn.1600427
  8. de Lange, C. F. M., W. C. Sauer, R. Mosenthin and W. B. Souffrant. 1989. The effect of feeding different protein-free diets on the recovery and amino acid composition of endogenous protein collected from the distal ileum and feces in pigs. J. Anim. Sci. 67:746-754 https://doi.org/10.2527/jas1989.673746x
  9. Dierick, N., I. Vervaeke, J. Decuypere and H. K. Henderickx. 1983. Influence de la nature et du niveau des fibers brutes sur la digestibilite ileale et fecale apparente de la matiere seche, des proteines et des acides amines et sur la retention azotee chez les porcs. Revue de I' Agriculture 36:1691-1712
  10. Englyst, H. N., S. M. Kingman and J. H. Cummings. 1992. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 46:S33-S50
  11. Fenton, T. W. and M. Fenton. 1979. An improved procedure for determination of chromic oxide in feed and feces. Can. J. Anim. Sci. 59:631-634 https://doi.org/10.4141/cjas79-081
  12. Fuller, M. F. and P. J. Reeds. 1998. Nitrogen cycling in the gut. Annu. Rev. Nutr. 18:385-411 https://doi.org/10.1146/annurev.nutr.18.1.385
  13. Graham, H., K. Hesselman and P. Aman. 1986. The influence of wheat bran and sugar beet pulp on the digestibility of dietary components in a cereal-based pig diet. J. Nutr. 116:242-251 https://doi.org/10.1093/jn/116.2.242
  14. Knabe, D. A., D. LaRue, E. J. Gregg, G. M. Martinez and T. D. Jr. Tanksley. 1989. Apparent digestibility of nitrogen and amino acids in protein feedstuffs by growing pigs. J. Anim. Sci. 67:441-458 https://doi.org/10.2527/jas1989.672441x
  15. Ko, T. G., J. H. Lee, B. G. Kim, T. S. Min, S. B. Cho, In. K. Han and Y. Y. Kim. 2004. Effects of phase feeding and sugar beet pulp on growth performance, nutrient digestibility, blood urea nitrogen, nutrient excretion and carcass characteristics in finishing pigs. Asian-Aust. J. Anim. Sci. 17:1150-1157 https://doi.org/10.5713/ajas.2004.1150
  16. Kornegay, E. T. and M. W. A. Verstegen. 2001. Swine nutrition and environmental pollution and odor control. In: Swine Nutrition (2nd edition). (Ed. E. T. Kornegay and M. W. A. Verstegen), CRC Press LLC, Boca Raton, FL. pp. 609-613
  17. Li, S., W. C. Sauer and R. T. Hardin. 1994. Effect of dietary fiber level on amino acid digestibility in young pigs. Can. J. Anim. Sci. 74:327-333 https://doi.org/10.4141/cjas94-044
  18. Mitaru, B. N., R. Blair, R. D. Reichert and W. E. Roe. 1984. Dark and yellow rapeseed hulls, soybean hulls and a purified fiber source: Their effects on dry matter, energy, protein and amino acid digestibilities in cannulated pigs. J. Anim. Sci. 59:1510-1518 https://doi.org/10.2527/jas1984.5961510x
  19. Moore, S. 1963. On the determination of cystine as cysteic acid. J. Biol. Chem. 238:235-237
  20. Morein, B. and K. F. Hu. 2001. Microorganisms exert bioactive and protective effects through the innate immune system. In: Gut Environment of Pigs. (Ed. A. Piva, K. E. Bach Knudsen and J. E. Lindberg), Nottingham University Press, Nottingham, NG11 0AX, UK. pp. 105-111
  21. Morel, P. C. H., J. Melai, S. L. Eady and G. D. Coles. 2005. Effect of non-starch polysaccharides and resistant starch on mucin secretion and endogenous amino acid losses in pigs. Asian-Aust. J. Anim. Sci. 18:1634-1641 https://doi.org/10.5713/ajas.2005.1634
  22. Mosenthin, R., W. C. Sauer and F. Ahrens. 1994. Dietary pectin's effect on ileal and fecal amino acid digestibility and exocrine pancreatic secretions in growing pigs. J. Nutr. 124:1222-1229
  23. Phuc, B. H. N. and J. E. Lindberg. 2000. Ileal and total tract digestibility in growing pigs given cassava root meal diets with inclusion of cassava leaves, leucaena leaves and groundnut foliage. Anim. Sci. 71:301-308 https://doi.org/10.1017/S1357729800055144
  24. Pluske, J. R., J. C. Kim, D. E. McDonald, D. W. Pethick and D. J. Hampson. 2001. Non-starch polysaccharides in the diets of young weaned piglets. In: The Weaner Pig: Nutrition and Management. (Ed. M. A. Varley and J. Wiseman), CABI Publishing, Wallingford, Oxon, UK. pp. 81-112
  25. Ravindran, V., E. T. Kornegay, A. S. B. Rajaguru and S. B. Notter. 1987. Cassava leaf meal as a replacement for coconut oil meal in pig diets. J. Sci. Food Agric. 41:45-53 https://doi.org/10.1002/jsfa.2740410105
  26. Sauer, W. C., R. Cichon and R. Misir. 1982. Amino acid availability and protein quality of canola and rapeseed meal for pigs and rats. J. Anim. Sci. 54:292-301 https://doi.org/10.2527/jas1982.542292x
  27. Sauer, W. C., R. Mosenthin, F. Ahrens and L. A. den Hartog. 1991. The effect of source of fiber on ileal and fecal amino acid digestibility and bacterial nitrogen excretion in growing pigs. J. Anim. Sci. 69:4070-4077 https://doi.org/10.2527/1991.69104070x
  28. Schneeman, B. O., B. D. Richter and L. R. Jacobs. 1982. Response to dietary wheat bran in the exocrine pancreas and intestine of rats. J. Nutr. 112:283-286 https://doi.org/10.1093/jn/112.2.283
  29. Spackman, D., W. Stein and S. Moore. 1958. Automatic recording apparatus for use in the chromatography of amino acids. Anal. Chem. 30:1190 https://doi.org/10.1021/ac60139a006
  30. Stoldt, W. 1952. Verschlag zur Vereinheitlichung der Fettbestimmung in Lebensmitteln (Suggestion to standardize the determination of fat in food stuffs). Fette Seifen Anstrichmittel 54:206-207 https://doi.org/10.1002/lipi.19520540406
  31. Wang, J. F., B. B. Jensen, H. Jorgensen, D. F. Li and J. E. Lindberg. 2002. Ileal and total tract digestibility, and protein and fat balance in pigs fed rice with addition of potato starch, sugar beet pulp or wheat bran. Anim. Feed Sci. Technol. 102:125-136 https://doi.org/10.1016/S0377-8401(02)00257-2
  32. Wang, J. F., Y. H. Zhu, D. F. Li, H. Jorgensen and B. B. Jensen. 2004a. The influence of different fiber and starch types on nutrient balance and energy metabolism in growing pigs. Asian-Aust. J. Anim. Sci. 17:263-270 https://doi.org/10.5713/ajas.2004.263
  33. Wang, J. F., Y. H. Zhu, D. F. Li, M. Wang and B. B. Jensen. 2004b. Effect of type and level of dietary fiber and starch on ileal and fecal microbial activity and short-chain fatty acid concentrations in growing pigs. Anim. Sci. 78:109-117
  34. Zhu Y. H., T. Lundh and J. F. Wang. 2003. Activities of enzymes involved in fatty acid metabolism in the colon epithelium of piglets fed with different fiber contents diets. Asian-Aust. J. Anim. Sci. 16:1524-1528 https://doi.org/10.5713/ajas.2003.1524

Cited by

  1. Effect of dietary fiber on phosphorus distribution in fresh and stored liquid hog manure vol.40, pp.9, 2013, https://doi.org/10.1139/cjce-2012-0418
  2. Gelatinized Carbohydrates in the Diet of Catla catla Fingerlings: Effect of Levels and Sources on Nutrient Utilization, Body Composition and Tissue Enzyme Activities vol.20, pp.1, 2007, https://doi.org/10.5713/ajas.2007.89
  3. Effect of Dietary Fiber Level on the Performance and Carcass Traits of Mong Cai, F1 Crossbred (Mong Cai×Yorkshire) and Landrace×Yorkshire Pigs vol.21, pp.2, 2008, https://doi.org/10.5713/ajas.2008.60598
  4. The Effects of Cellulose, Pectin and Starch on Standardized Ileal and Apparent Total Tract Amino Acid Digestibilities and Bacterial Contribution of Amino Acids in Feces of Growing Pigs vol.21, pp.6, 2008, https://doi.org/10.5713/ajas.2008.70478
  5. Growth, Nutrient Utilization and Amino Acid Digestibility of Dairy Calves Fed Milk Replacers Containing Different Amounts of Protein in the Preruminant Period vol.21, pp.8, 2006, https://doi.org/10.5713/ajas.2008.70562
  6. A Review of Interactions between Dietary Fiber and the Gastrointestinal Microbiota and Their Consequences on Intestinal Phosphorus Metabolism in Growing Pigs vol.21, pp.4, 2006, https://doi.org/10.5713/ajas.2008.r.03
  7. Effects of dietary fibre level and body weight of pigs on nutrient digestibility and available energy in high‐fibre diet based on wheat bran or sunflower meal vol.103, pp.6, 2006, https://doi.org/10.1111/jpn.13197
  8. Effects of fibre-degrading enzymes in combination with different fibre sources on ileal and total tract nutrient digestibility and fermentation products in pigs vol.74, pp.4, 2006, https://doi.org/10.1080/1745039x.2020.1766333