Nitrate Movement in The Root Zone of Corn Fields with Different Tillage Systems

경운에 따른 옥수수 근권에서의 질산태질소의 이동양상

  • Kim, Won-Il (Agricultural Environment and Ecology Division, National Institute of Agricultural Science and Technology) ;
  • Jung, Goo-Bok (Agricultural Environment and Ecology Division, National Institute of Agricultural Science and Technology) ;
  • Lee, Jong-Sik (Agricultural Environment and Ecology Division, National Institute of Agricultural Science and Technology) ;
  • Kim, Jin-Ho (Agricultural Environment and Ecology Division, National Institute of Agricultural Science and Technology) ;
  • Lee, Jeong-Taek (Agricultural Environment and Ecology Division, National Institute of Agricultural Science and Technology)
  • 김원일 (농업과학기술원 환경생태과) ;
  • 정구복 (농업과학기술원 환경생태과) ;
  • 이종식 (농업과학기술원 환경생태과) ;
  • 김진호 (농업과학기술원 환경생태과) ;
  • 이정택 (농업과학기술원 환경생태과)
  • Received : 2005.10.16
  • Accepted : 2006.01.20
  • Published : 2006.02.28

Abstract

Movement of nitrate ($NO_3-N$) through a soil profile under no tillage (NT) or conventional tillage (CT) practices was monitored to identify the effects of tillage systems on nitrate leaching and retention in the soil profile at two commercial farms in central Illinois from 1993 through 1994. Anhydrous ammonia was applied in the 1993 growing seasons, while a mixture of urea and ammonium nitrate solution (URAN) was applied in three separate applications during the spring and early summer of the 1994 season. $NO_3-N$ of each plot through a 100 cm soil depth was found to be significantly high around $20mg\;kg^{-1}$ soil in the early 1993 season. However, downward movement of $NO_3-N$ occurred during the growing season. At the end of growing season, Flanagan and Ipava soils generally retained more $NO_3-N$ through the soil profile for both the CT plots and the NT plots than the Saybrook and Catlin soils. However, there was no significant difference between the nitrate content of the two soil types in each year. $NO_3-N$ content in NT fields were slightly higher than that observed in CT fields throughout the season before harvest. It means that NT plots may reduce the nitrate leaching to the ground water.

질산태 질소의 이동에 대한 토양 특성과 경운의 영향을 구명하기 위하여 1993년부터 1994년까지 2년 동안 미국 일리노이주 중부지방의 몇 개 토양통이 다른 옥수수 포장에서 질산태 질소의 함량을 조사하였다. 1993년 포장에는 무수암모니아 $225kg\;ha^{-1}$을, 1994년 포장에는 URAN $115kg\;ha^{-1}$을 시용하였다. 1993년 초기 포장에 질산태질소의 함량은 토양 깊이 100 cm 까지 $20mg\;kg^{-1}$ 정도의 농도를 보였으나, 시용후 옥수수 재배 초기에는 질산태질소의 하향이동을 확인할 수 있었다. 또한 수확 후 토양중의 질산태질소의 함량은 유기물 함량이 보다 많은 Flanagan 및 Ipava 토양통에서 Saybrook 및 Catlin 토양통에 비해 높은 경향을 보였으나 유의적인 차이는 없었고, 무경운 포장에서 경운 포장에 비하여 질산태질소의 함량이 높게 나타났다. 이는 무경운에 의한 질산태질소의 지하수로의 용탈 감소를 의미한다.

Keywords

References

  1. Angle, J. S., C. M. Gross, R. L. Hill, and M. S. McIntosh. 1993. Soil nitrate concentrations under corn as affected by tillage, manure, and fertilizer applications. J. Environ. Qual. 22: 141-147 https://doi.org/10.2134/jeq1993.00472425002200010018x
  2. Bauder, J. W., and R. P. Schneider. 1979. Nitrate-nitrogen leaching following urea fertilization and irrigation. Soil Sci. Soc. Am. J. 43: 348-352 https://doi.org/10.2136/sssaj1979.03615995004300020022x
  3. Eck, H. V., and O. R. Jones. 1992. Soil nitrogen status as affected by tillage, crops, and crop sequences. Agron. J. 84: 660-668 https://doi.org/10.2134/agronj1992.00021962008400040025x
  4. Gagnon, J., K. A. Haycock, J. M. Roth, D. S. Feldman, Jr. W. F. Finzer, R. Hoffman, and J. Simpson. 1989. SuperANOVA accessible general linear modeling. Abacus Concepts Inc. CA
  5. Gaines, T. P., and S. T. Gaines. 1994. Soil texture effect on nitrate leaching in soil percolates. Commun. Soil Sci. Plant Anal. 25 (13 & 14): 2561-2570 https://doi.org/10.1080/00103629409369207
  6. Harris, G. H., O. B. Hesterman, E. A. Paul, S. E. Peters, and R. .R Janke. 1994. Fate of legume and fertilizer nitrogen-15 in a longterm cropping system experiment. Agron. J. 86: 910-915 https://doi.org/10.2134/agronj1994.00021962008600050028x
  7. Hauck, R. D. 1982. Nitrogen-isotope-ratio analysis. p 735-779 In Methods of soil analysis. part 2. (2nd ed.) Agronomy. ASA, Madison, WI
  8. Illinois Soil Survey. series 1900-1996. University of Illinois at Urbana-Champaign, College of Agriculture, Cooperative Extension Service
  9. Ismail, I., R. L. Blevins, and W. W. Frye. 1994. Long-term notillage effects on soil properties and continuous com yields. Soil Sci. Soc. Am. J. 58: 193-198 https://doi.org/10.2136/sssaj1994.03615995005800010028x
  10. Kanwar, R, S., J. L. Baker, J. M. Laflen. 1985. Nitrate movement through the soil profile in relation to tillage system and fertilizer application method. Transactions of the ASAE. 28(6): 1802-1807 https://doi.org/10.13031/2013.32522
  11. Kitur, B. K., S. R. Phillips, K. R. Olson, and S. A. Ebelhar. 1994. Tillage effects on selected chemical properties of Grantsburg silt loam. Commun. Soil Sci. Plant Anal. 25(3&4): 225-246 https://doi.org/10.1080/00103629409369033
  12. Kundler, P. 1970. Utilization, fixation, and loss of fertilizer nitrogen (review of international results of the last 10 years of basic research). Albrecht-Thaer-Arch. 14: 191-210
  13. Lal, R., A. A. Mahboubi, and N. R. Fausey. 1994. Long-term tillage and rotation effects on properties of a central Ohio soil. Soil Sci. Soc. Am. J. 58: 517-522 https://doi.org/10.2136/sssaj1994.03615995005800020038x
  14. Randall, G. W., and T. K. Iragavarapu. 1995. Impact of long-term tillage systems for continuous corn on nitrate leaching to tile drainage. J. Environ. Qual. 24: 360-366 https://doi.org/10.2134/jeq1995.00472425002400020020x
  15. Rao, S. C, and T. H. Dao. 1992. Fertilizer placement and tillage effects of nitrogen assimilation by wheat. Agron. J. 84: 1028-1032 https://doi.org/10.2134/agronj1992.00021962008400060023x
  16. Rice, C W., M. S. Smith, and R. L. Blevins. 1986. Soil nitrogen availability after long-term continuous no-tillage and conventional tillage com production. Soil Sci. Soc. Am. J. 50: 1206-1210 https://doi.org/10.2136/sssaj1986.03615995005000050023x
  17. SAS Institute. 1985. SAS procedures guide for personal computers. Version 6 edition. SAS Institute Inc. NC
  18. Sims, G. K., T. R. Ellsworth, and R. L. Mulvaney. 1995. Microscale determination of inorganic nitrogen in water and soil extracts. Commun. Soil Sci. Plant Anal. 26(1&2): 303-316 https://doi.org/10.1080/00103629509369298
  19. Stinner, B. R., G. D. Hoyt, and R. L. Todd. 1983. Changes in soil chemical properties following a 12-year fallow: A 2-year comparison of conventional tillage and no-tillage agroecosystems. Soil Tillage Res. 3: 277-290 https://doi.org/10.1016/0167-1987(83)90028-4
  20. Timmons, D. R. 1984. Nitrate leaching as influenced by water application level and nitrification inhibitors. J. Environ. Qual. 13: 305-309 https://doi.org/10.2134/jeq1984.00472425001300020026x
  21. Tisdale, S. L., W. L. Nelson, and J. D. Beaton. 1985. Soil fertility and fertilizers. Macmillan Publishing Company, New York
  22. Wallace, A. 1994. Soil organic matter is essential to solving soil and environmental problems. Commun. Soil Sci. Plant Anal. 25(1&2): 15-28 https://doi.org/10.1080/00103629409368999