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APPROXIMATION ORDER TO
A FUNCTION IN L, SPACE BY
GENERALIZED TRANSLATION NETWORKS

Naumwoo Haum! aND BuMm I Hong*

Abstract. We investigate the approximation order to a function
in Ly[—1,1] for 0 < p < oo by generalized translation networks.
In most papers related to neural network approximation, sigmoidal
functions are adapted as an activation function. In our research, we
choose an infinitely many times continuously differentiable function
as an activation function. Using the integral modulus of continuity
and the divided difference formula, we get the approximation order

to a function in Lp[—1,1].

1. Introduction

Recently, approximation of functions from spaces generated by the
linear combinations of translates and dilates of one function have been
widely studied in many different disciplines such as mathematics, com-
puter science and engineering[1, 4, 7].

A feedforward network with one hidden layer is of the form

icic(aia: + b;) (1.1)
i=1
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where the weight a;, the threshold b; and ¢; are real numbers for 1 < i <

n and o is an activation function. There are some examples of activation

functions.
o(z) = (1+ 6—1)_1, (The squashing function)
o(z) = (1+2%)* agZ, (Generalized multiquadrics)
a(z) = |2[*7!, geN, (Thin plate splines)
and
o(x) = exp(—|z|?). (The Gaussian function)

In neural network approximation, we have two main problems. The
first is the density problem and the second is the complexity problem.
The complexity problem in the theory of neural networks is almost the
same as the problem of degree of approximation. This problem has been
studied extensively in recent years|2, 3, 5, 6].

In [6], Mhaskar and Hahm introduced the generalized translation net-

works. A generalized translation network with n neurons is of the form
n
> cit(a; - T+ b;) (1.2)
i=1

where a;, b; and ¢; are real numbers for 1 <7 < n and ¢ is a real-valued
function defined on R. For a fixed natural number n, II,, denotes
the set of such functions. In the generalized translation network, the
activation function ¥ doesn’t have a special properties around oo and
—oo like a sigmoidal function.

In [2], we obtained the approximation order to a function in C(R)
by neural networks with a sigmoid activation function. In this paper,
we investigate the approximation order to a function in L,[—-1,1] by
generalized translation networks. In general, a function in L,[-1,1]
may not be continuous and so the approximation order is represented
by the integral modulus of continuity which is defined in Section 2. In
order to use the integral modulus of continuity, we assume that the

target function is periodic.
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2. Preliminaries

We introduce some notations. If f is a Lebesgue measurable function
on [—1,1] and 1 < p < oo, we define the p norms of f as follows.

{f_% |f<ac>1pdac}B £ 1< p< oo

ess supze(-1,j|f(2)| if p=o0

In order to get a main result, we need the following.

1fllp -1y =

Definition 2.1. If the measurable function f(z) of period b — a be-
longs to Lpla,b), then

b r
o] = ;Tgt{ / if(w+h)—f(:v)l”dw} L@

Note that the integral modulus of continuity satisfies the following
properties directly from the definition.

(1) w(f,0)p,fap) =0

(2) w(f,t)p,ja,b) is a nondecreasing function

(8) w(f,at)p (a,p) < (@+1)w(f,t)p (4,5 for each non-negative real num-
ber a.

Throughout the paper, II,, denotes the set of all algebraic polynomials
of degree at most n and II}, denotes the set of all trigonometric polyno-
mials of degree at most n. For every f € L,[—1,1] and f* € Ly[—m, 7],
we define

Enpl(f) = nf If=Plpoy and Ei,(f) = o ||f*=P"lp

Note that there is a connection between functions defined on [—1,1]
and functions of period 27. If f : [-1,1] — R, then f*(8) = f(cos®)
defines an even periodic function. Conversely, f(cosf@) = f*(0) defines
a function f on [—1,1] for an even, 27-periodic function f*. From these

relations, we can easily obtain

Enp(f) = B o(f)- (2.2)
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3. Main Results

First of all, we want to show the approximation order to a function in
L,[-1,1] by algebraic polynomials. For this, we need some well-known

results. From the identity

sin &

onEN\ 2
<Sln7) =n+ [(n_ l)COSt+ (n—2)COS2t+' --—{—COS(n_ l)t] (31)
2

4
in ot
we conclude that isllnT;' is a trigonometric polynomial of degree 2n—2

and it is also an even function. The computations of following lemmas

are in [8,9].

Lemma 3.1.

/% <Sifl nt>4dt _ nm(2n? + 1). (3.2)
0 sint 6
Lemma 3.2. .
5 /sinnt n2n?
t dt . 3.3
/0 ( sint ) < 4 (3:3)

In order to investigate the approximation order to a function in
L,[-1,1] by algebraic polynomials, we use even trigonometric polyno-

mials and the equation (2.2).

Theorem 3.3. For 2-periodic function f € Ly[—1,1] and m € N, we

have

Eon(f) < M- wlf, Dpior (34)

where M is a positive constant depending on f.

Proof. We use the idea stated in Section 2. We set f*(z) = f(cosz)
for z € [—m,w]. We define

3 ™ sin 2% 4
x = — * t dt.
Pon—s(2) 2mr(2m? +1) J_, G )( sin £ )
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Since f* is even, Py, _,(z) is an even trigonometric polynomial of degree

at most 2m — 2 and so Pj,,_, € II3 .. By some suitable substitutions,

we have
3 sin ¢ 4
Py _o(z)= ZmrEmi+1) J_ f(x+t)(sm§>dt
3 . . sm— 4
- 2m7r(2m2+1)/0 [frlatt)=f (m—t)]( sin § > at

3 3 x . sinmt\*
- 2m7r(2m2+1)/0 e+t -1 (x—2t)]( sint > at

By (3.3) and the generalized Minkowski inequality, we have
™ = Pamallp,j—m,m

:{2m71'2m2+1 /_w/ “(z +2t) = f*(z — 2t)
P )1(S‘“mt)dtipdw}%

<5 / 20 sinmt ) ©
= 2mn(2m? +1) J, »Ep =\ Teint
6 1 sinmt
< 2 (5 Y (@m+1+t dt
- 2m7r(2m2+1)w(f mpl "]/ mt Lt )< int )

<M*- (f ’ )p [-m,7]-

Therefore, we have

1
Ejn(f) € Bimesf) S M lf", pionm (35)

Since Py,,_,(z) is an even trigonometric polynomial, it can be written

as
2m—2

P oz Z ax coskz. (3.6)

For each k with 0 < k < 2m -2, let Tk (m) be the Chebyshev polynomial
such that Ti(x) = coskz for z € [—m, 7]. Now, we set
2m-2

sz_z(l‘) = Z aka(m). (37)

k=0
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Then Py,—o(z) € Iz, By (3.5) and (2.2), we have

1
Eom(f) < Eom—2(f) S If = Pom—-2llpj-1,1) £ M -w(f, ;{);;,[—1,1] (3.8)
where M is a positive constant depending on f. This completes the

proof. W

Now we approximate polynomials on [—1, 1] by the generalized trans-

lation networks. The proof of Theorem 3.4 is the modified proof in [5].

Theorem 3.4. Let 9 be a real-valued function on R which is infin-
itely many times differentiable in some open interval (b — 8,b+ §) in R.

Assume that

DDy(b) # 0.

for r € Z and let Ty(z) be the Chebyshev polynomial of degree k. Then
for any € > 0, there exists a generalized translation network Gy m €

Il6m+1,4 such that

1
Tk — Gi,mllp,-1,1) < o€ (3.9)

for1 <p < oo.

Proof Let ¢ > 0. Note that Ty (z) = S°

P
p=0 Cpt? for some ¢, € R.

From the formula

or
wp(a»fﬂ) = é_a';w(a T+ b) =z 1/)(1’)(‘1 T+ b)’

we have
2” = (Y1) ™" - ¥p(0, ).
For any h > 0, the formula

Eyale) = 75 310 () v @i =) -2+)

=0 t
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represents a divided difference for 1,(0, z). In addition, we have

1Wp,n — (0, ')”oo,[—l,l] <M-h

where M is a positive constant.
Now, we choose

) ) . €
B i= mm{——, mirn ( k )}
dmosksim \ M - 57 ((®)(5)) " |c, |

Then, the generalized translation network Gy, defined by

k
Grm(z) =Y o (6))™1 - Ty, (2) (3.10)

belongs to Ilgm4 1,4 since the weights and thresholds in G,m are selected
from the set {(hnj,b) : |j] < 3m}. Hence
1 1
1Tk = Grmllp(-1,1) < 1Tk = Grmlloo,(-1,1) < TR
This completes the proof. |

For a fixed m, we can easily obtain from (3.9) that

2m-2 2m—2 C
I kZ: ar T — kz akGr,mllp -1, < 7 (3.11)
0 =0

where C is a positive constant depending on f and m.

From Theorem 3.3 and Theorem 3.4, we get the main result.

Theorem 3.5. Let v be a real-valued function on R which is infin-
itely many times differentiable in some open interval (b — 6,b+ 6) in R.
Assume that

D"Mp(b) # 0.

For any 2-periodic function f € L,(—1,1] and a given natural number
n, there exists a generalized translation network N, € II, . such that
1
1 = Nallpoay < M- wlf, Dpisy
Where M is a positive constant depending on f.
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Proof. Let n > 13 and € > 0 be given. Also, let m be the largest
natural number such that 12m + 1 < n. Then n < 13m and

1

13 1 1
w(f, E)p = w(f, 'ié;;;)p < 13w(f, 13—m)p < 13w(f, E)p (3.12)

Note that Py, _2(z) = 22252 axTx(x) as in (3.7) is an algebraic poly-
nomials of degree at most 2m — 2. We define a neural network

2m—2

Np(z) = Z axGr,2m(7)

k=0

where Gim(z) = Yob_o (@ (0)) ™1 ¥y 5, (z). Then Ny, € Mizmyry C
I, . (see (3.10)) From Theorem 3.3, (3.11) and (3.12), we have

2m-—2 2m—2
If = Nallpj—1,y SN = D Pom—zllpi=1y+ | D Pam—2 — Nullp -1,
k=0 k=0
1 C
< M - w(f, ;l')p,[—l,l] + 2_p€'

Since € > 0 is arbitrary, we get the result. This completes the proof. [J
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