NEUTRAL SUBTRACTION ALGEBRAS

YOUNG HEE KIM AND EUN HWAN ROH*

Abstract. Neutral subtraction algebras and neutral ideals are introduced, and related properties are investigated.

1. Introduction

B. M. Schein [6] considered systems of the form $(\Phi; \circ, \setminus)$, where Φ is a set of functions closed under the composition "o" of functions (and hence $(\Phi; \circ)$ is a function semigroup) and the set theoretic subtraction "\" (and hence $(\Phi; \setminus)$ is a subtraction algebra in the sense of [1]). He proved that every subtraction semigroup is isomorphic to a difference semigroup of invertible functions. B. Zelinka [7] discussed a problem proposed by B. M. Schein concerning the structure of multiplication in a subtraction semigroup. He solved the problem for subtraction algebras of a special type, called the atomic subtraction algebras. Y. B. Jun et al. [4] introduced the notion of ideals in subtraction algebras and discussed characterization of ideals. In [3], Y. B. Jun and H. S. Kim established the ideal generated by a set, and discussed related results. Y. B. Jun and K. H. Kim [5] introduced the notion of prime and irreducible ideals of a subtraction algebra, and gave a characterization of a prime ideal. They also provided a condition for an ideal to be a prime/irreducible ideal. In

Received February 17, 2006. Revised March 15, 2006.

²⁰⁰⁰ Mathematics Subject Classification:03G25, 06B10, 06D99.

Key words and phrases: neutral element, neutral part, (neutral) subtraction algebra, neutral ideal.

^{*} Corresponding Author. Tel. +82 55 740 1232.

this paper, we introduce the notion of neutral subtraction algebras and neutral ideals, and investigate several properties.

2. Preliminaries

By a subtraction algebra we mean an algebra (X; -) with a single binary operation "-" that satisfies the following identities: for any $x, y, z \in X$,

- (S1) x (y x) = x;
- (S2) x (x y) = y (y x);

(S3)
$$(x-y)-z=(x-z)-y$$
.

The last identity permits us to omit parentheses in expressions of the form (x-y)-z. The subtraction determines an order relation on X: $a \le b \Leftrightarrow a-b=0$, where 0=a-a is an element that does not depend on the choice of $a \in X$. The ordered set $(X; \le)$ is a semi-Boolean algebra in the sense of [1], that is, it is a meet semilattice with zero 0 in which every interval [0,a] is a Boolean algebra with respect to the induced order. Here $a \land b = a - (a-b)$; the complement of an element $b \in [0,a]$ is a-b; and if $b,c \in [0,a]$, then

$$b \lor c = (b' \land c')' = a - ((a - b) \land (a - c))$$

= $a - ((a - b) - ((a - b) - (a - c))).$

In a subtraction algebra, the following are true (see [4, 5]):

- (a1) (x-y) y = x y.
- (a2) x 0 = x and 0 x = 0.
- (a3) (x-y) x = 0.
- (a4) $x (x y) \le y$.
- (a5) (x-y) (y-x) = x y.
- (a6) x (x (x y)) = x y.
- (a7) $(x-y) (z-y) \le x-z$.
- (a8) $x \leq y$ if and only if x = y w for some $w \in X$.

- (a9) $x \le y$ implies $x z \le y z$ and $z y \le z x$ for all $z \in X$.
- (a10) $x, y \le z$ implies $x y = x \land (z y)$.
- (a11) $(x \wedge y) (x \wedge z) \leq x \wedge (y z)$.

Definition 2.1. [4] A nonempty subset A of a subtraction algebra X is called an *ideal* of X if it satisfies

- $0 \in A$
- $(\forall x \in X)(\forall y \in A)(x y \in A \Rightarrow x \in A)$.

Lemma 2.2. [5] An ideal A of a subtraction algebra X has the following property:

$$(\forall x \in X)(\forall y \in A)(x \le y \Rightarrow x \in A).$$

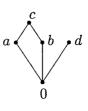
3. Neutral subtraction algebras

Definition 3.1. Let X be a subtraction algebra. An element $a \in X$ is said to be *neutral* if it satisfies

$$(\forall x \in X)(a \neq x \Rightarrow a - x = a, x - a = x).$$

Let N(X) denote the set of all neutral elements of a subtraction algebra X, and we call N(X) the neutral part of X. Obviously $0 \in N(X)$. Note that any non-zero element x of a subtraction algebra X such that $x \leq y$ for some $y \in X$ (or, $y \leq x$ for some $y \neq 0$) $\in X$) can not be a neutral element of X. Hence we know that if a subtraction algebra X forms a chain, then $N(X) = \{0\}$.

Example 3.2. (1) Consider a subtraction algebra $X = \{0, a, b, c, d\}$ with the following Cayley table and Hasse diagram.



Then $N(X) = \{0, d\}.$

(2) Consider a subtraction algebra $X = \{0, a, b, c, d\}$ with the following Cayley table and Hasse diagram.

_	0	a	b	c	d
0	0	0	0	0 a b 0 d	0
a	a	0	a	a	a
b	b	b	0	b	b
c	c	c	c	0	c
d	d	d	d	d	0

Then
$$N(X) = \{0, a, b, c, d\} = X$$
.

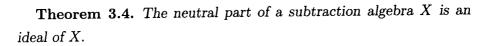
Based on the above example, we give the notion of neutral subtraction algebras.

Definition 3.3. A subtraction algebra X is said to be *neutral* if it satisfies:

$$(\forall x, y \in X) (x \neq y \Rightarrow x - y = x),$$

or equivalently N(X) = X.

Note that the subtraction algebra X in Example 3.2(2) is a neutral subtraction algebra, but the subtraction algebra X in Example 3.2(1) is not a neutral subtraction algebra. Note also that the subtraction algebra of order 2 is neutral.



Proof. Obviously $0 \in N(X)$. Let $x, y \in X$ be such that $x - y \in N(X)$ and $y \in N(X)$. Now $y \in N(X)$ implies $x = x - y \in N(X)$. Hence N(X) is an ideal of X.

Note that a subalgebra of a subtraction algebra X may not be an ideal of X. In fact, consider the subtraction algebra $X = \{0, a, b, c, d\}$ as in Example 3.2(1). Then $\{0, c\}$ is a subalgebra of X which is not an ideal of X since $a - c = 0 \in \{0, c\}$ and $a \notin \{0, c\}$.

We now give a condition for a subalgebra to be an ideal.

Theorem 3.5. Every subalgebra of a neutral subtraction algebra is an ideal.

Proof. Let A be a subalgebra of a neutral subtraction algebra X. Then $0 = x - x \in A$ for every $x \in A$. Let $x, y \in X$ be such that $x - y \in A$ and $y \in A$. Since x is a neutral element, it follows that $x = x - y \in A$ so that A is an ideal of X.

Theorem 3.6. Let B be a subset of a subtraction algebra X such that $0 \in B \subseteq N(X)$. Then B is an ideal of X.

Proof. Let $x, y \in X$ be such that $x - y \in B$ and $y \in B$. Since y is neutral, it follows that $x = x - y \in B$. Hence B is an ideal of X. \square

Corollary 3.7. In a neutral subtraction algebra, every subset containing the zero element 0 is an ideal.

Proof. Straightforward. \Box

Corollary 3.8. If X is a neutral subtraction algebra which has n nonzero elements, then X has 2^n numbers of ideals.

Proof. Straightforward.

Definition 3.9. An ideal I of a subtraction algebra X is said to be neutral if $N(X) \subseteq I$.

Example 3.10. In Example 3.2(1), the set $I_1 = \{0, d\}$, $I_2 = \{0, b, d\}$, $I_3 = \{0, a, d\}$ and X itself are neutral ideals of X. But $J_1 = \{0, a\}$, $J_2 = \{0, b\}$, and $J_3 = \{0, a, b, c\}$ are ideals of X which are not neutral.

Note that in a neutral subtraction algebra, there are no proper neutral ideals.

Theorem 3.11. Any intersection of neutral ideals is a neutral ideal.

Proof. Straightforward.

Question. If X is a subtraction algebra in which all non-zero elements do not comparable each other, then is X neutral?

References

- [1] J. C. Abbott, Sets, Lattices and Boolean Algebras, Allyn and Bacon, Boston 1969.
- [2] G. Birkhoff, *Lattice Theory*, Amer. Math. Soc. Colloq. Publ., Vol. 25, second edition 1984; third edition, 1967, Providence.
- [3] Y. B. Jun and H. S. Kim, On ideals in subtraction algebras, Sci. Math. Jpn. (submitted)
- [4] Y. B. Jun, H. S. Kim and E. H. Roh, Ideal theory of subtraction algebras, Sci. Math. Jpn. Online e-2004 (2004), 397-402.
- [5] Y. B. Jun and K. H. Kim, Prime and irreducible ideals in subtraction algebras, Ital. J. Pure Appl. Math. (submitted)
- [6] B. M. Schein, Difference Semigroups, Comm. in Algebra 20 (1992), 2153-2169.
- [7] B. Zelinka, Subtraction Semigroups, Math. Bohemica, 120 (1995), 445-447.

Y. H. Kim

Department of Mathematics Chungbuk National University Chongju 361-763, Korea Email: yhkim@chungbuk.ac.kr

E. H. Roh

Department of Mathematics Education Chinju National University of Education Jinju 660-756, Korea Email:ehroh@cue.ac.kr