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SIMULATIVE AND MUTANT WFI-ALGEBRAS

YOoUNG BAE JUN AND SEOK-ZUN SONG*

Abstract. The notion of simulative and mutant WFI-algebras is
introduced, and several properties are investigated. Characteriza~
tions of a simulative WFI-algebra are established. A relation be-
tween an associative WFI-algebra and a simulative WFI-algebra is
given. Some types for a simulative WFI-algebra to be mutant are

found.

1. Introduction

In 1990, W. M. Wu [3] introduced the notion of fuzzy implication al-
gebras (FI-algebra, for short), and investigated several properties. In [2],
Z. Li and C. Zheng introduced the notion of distributive (resp. regular,
commutative) Fl-algebras, and investigated the relations between such
Fl-algberas and MV-algebras. In [1], Y. B. Jun discussed WFI-algebras
(weak fuzzy implication algebras) which are weaker than Fl-algebras,
and gave a characterization of a WFI-algebra. He introduced the notion
of associative (resp. normal, medial) WFI-algebras, and investigated
several properties. He gave conditions for a WFI-algebra to be associa-
tive/medial, and provided characterizations of associative/medial WFI-
algebras, and showed that every associative WFI-algebra is a group in

which every element is an involution. He also verified that the class
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of all medial WFI-algebras is a variety. In this paper, we introduce
the notion of simulative and mutant WFI-algebras and investigate some
properties. We establish characterizations of a simulative WFI-algebra.
We give a relation between an associative WFI-algebra and a simulative
WFI-algebra. We find some types for a simulative WFEI-algebra to be

mutant.

2. Preliminaries

We investigate an algebra ¥ := (G;6,1), consisting of a set G, a
binary operation © and a special element 1, which satisfies the four

axioms:

(al) zo(yoz)=yo(rez),

(a2) (zoy) e (yez)e(zez) =1,

(a3) zoz =1,

(ad) z0y=ySa=1=z=1y.

We call such algebra a WFI-algebra. A nonempty subset S of G is called
a subalgebra of 4 if x ©y € S whenever z,y € 5. A nonempty subset F
of G is called a filter of ¢ if it satisfies:

e 1€ F,

e xOy€ Fandz € Fimplyy e Fforall z,y € G.
In a WFI-algebra ¢, the following are true (see [1]):
ro((zoy)oy) =1,
ler=1=z=1,

)
(b2)
(b3) Loz =2z,
(b4)
(

b5) (zoy)ol=(zel)s(yoel).

We now define a relation “<X” on 4 by x <y ifand only if z 6y = 1.
It is easy to verify that a WFI-algebra is a partially ordered set with
respect to <. A WFI-algebra ¢ is said to be associative [1] if it satisfies
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(z0y)oz=28(y6z) forall z,y,z € G. A WFI-algebra ¢ is said to

be medial [1] if it satisfies
(zoy)o(aob)=(z0a)o(yob)

for all z,y,a,b € G.

3. Simulative and Mutant WFI-algebras

For a WFI-algebra ¢, the set
S(%):={zeCG|z=1}

is called the simulative part of 4. Let z,y € S(¥4). Thenz &1 =1 and
y© 1 =1. It follows from (b5) that

(zoy)ol=(zol)e(yol)=161=1

so that z &y < 1. Hence z © y € §(¥), which shows that S(¥) is a
subalgebra of ¢.

Proposition 3.1. The simulative part of a WFI-algebra & is a filter
of 4.

Proof. Obviously, 1 € §(¥). Let z,y € G be such that z € §(¥¢) and
zOy € S(¥). Then z X1 and x &y < 1. It follows from (b5) and (b3)
that

l=@zoy)ol=@ol)eyol)=1cyol)=yol,
that is, y < 1. Hence y € §(¢), and the proof is complete. O

Definition 3.2. A WFI-algebra ¢ is said to be simulative if it sat-

isfies

S)z=x1=z=1

Note that the condition (S) is equivalent to S(¥4) = {1}.
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Example 3.3. (1) Let Z be the set of integers. Then 3 := (Z; o, 0)
1s a simulative WFI-algebra, where z 6y =y~ z for all z,y € Z.
(2) Let G = {1,a,b} be a set with the following Cayley table and

Hasse diagram:

Then & := (G;©,1) is a WFI-algebra (see [1]) which does not satisfy
the condition (S).

Theorem 3.4. Let & be a WFl-algebra. Then the following are

equivalent.

(i) ¢ is simulative.
(i) (z&l)0l=12,Vzeq.
(i) (zel)oy=(yol)oz Y,y € G.

Proof. (i) = (ii) Suppose that ¢ is simulative. Using (al) and (a3),

we have
ro(zeol)el)=(zol)o(zol) =1,

that is, < (z © 1) © 1. It follows from (a3) and (b4) that
(rol)el)sz=<z0z=1

so from (S) that ((z©1)6 1)z =1, that is, (z©1) &1 < z. Hence,
by (ad), we get (z& 1)1 = 2.
(ii) = (iii) Assume that ¢ satisfies (ii). Then

(zol)oy = (zel)e(yol)ol) by (i)
= (yol)o((zel)el) by (al)
= (yol)owx, by (i)

which proves (iii).
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(ili) = (i) Suppose that ¢ satisfies (iii) and let z € G be such that
z < 1. Then

r=1lez=(10l)ozr=xel)el=181=1,
and so 4 is simulative. |

Theorem 3.5. Let ¢4 be a WFI-algebra. Then the following are
equivalent.
(i) ¢ is simulative.
i) z<y = z=y.
(iii) (zoy)0(20Y)=2061 Ya,y,2 € G.
(iv) (zoy)6l=y62 VI, €G.
(v) ¢ satisfies the right cancellation law, ie., 202 =ySz = ©=y.
(vi) (zey)e(zoy)=(z02)01,Vr,y,2€ G.

Proof. (1) = (ii) Suppose that ¢ is simulative and let z,y € G be
such that z < y. Then

(yvezr)el = (yel)e(zol) by (bs)
ye(zey)o(xel) since z < ¥
zeyoy))e(zal)  by(al)

= (zol)o@xel) by (a3)
1

= 1, by (a3)
andsoyOz € 8(¥9) ={1}. Thusyez =1, ie., y < z. It follows from
(ad) that z = y.

(ii) = (ili) Assume that (ii) holds. Since 26z <X (z 8 y) © (2 O y),
it follows from (ii) that z0z = (z 0 y) 6 (2 O y).

(iii) = (iv) Suppose that (iii) is true. Then

(zoy)el=(@zol)o(yol)=youz.

(iv) = (v) Assume that (iv) is true and let z,y, 2 € G be such that
S z=y&z Then

yozr=(z0y)ol=(cy)o(yoz)e(zez)=
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Similarly, we have x @y = 1, and so z = y by (ad).

(v) = (i) Suppose that ¥ satisfies the right cancellation law. Let
z€S(¥). Thenz61=1=161, and so z = 1 by using (v). Therefore
S(¥%) = {1} which shows that ¢ is simulative.

(iv) = (vi) If (iv) is true, then (iii) is valid, and so

(zoy)e(zey)=z0zxz=(z02)61.

(vi) = (i) Suppose that (vi) is valid and let z € §(¥4). Then z 61 =
1 =z © z, which implies that

=@zone(ler)=Eol)el=161=1.

This shows that S(¢) = {1}. Hence ¢ is simulative. This completes
the proof. O

Proposition 3.6. Let ¢ be a simulative WFI-algebra. Then
zOyoz)=((261)0y) 02 Vz,y,2€G.

Proof. For any z,y, z € G, we have

zo{yoez) = (zel)el)e(yez) by Theorem 3.4
= yo(((zel)el)ez) by (al)
= yo((zo6l)e(z61)) by Theorem 3.4
- (eloe@en) byl
= (ye@xel)el)sz by Theorem 3.4
= ((zxel)ey)ez, by Theorem 3.5

which completes the proof. 0

Theorem 3.7. Let 4 be a simulative WFI-algebra and define a bi-
nary operation “” on 4 by x -y = (yo1)©x for all z,y € G. Then

(G,-, 1) is a commutative group.



Simulative and Mutant WFI-algebras 565
Proof. Using (al) and Theorem 3.4(iii), we have

z-(y-2) = z-(zel)oey=(=el)eyol)ex
= (zel)e(zel)oy=Ezel)e(zel)oy)
= (zel)e(yol)oz)=(z-y) 2

andz-y=(yol)gz=(z61)6y =y -z It follows from Theorem
34(ii)that z-1=1.2=(z©01)81 =2 and

(zol) z=z-(z6l)=(z6l)ol)oz=z0z =1
Hence (G, -, 1) is a commutative group with ©1 as the inverse of z.

Conversely, we have the following.

Theorem 3.8. If (G, -, 1) is a commutative group, then ¥ := (G; 6, 1)
is a simulative WFI-algebra, where x ©y=2"1-y forall z,y € G.

Proof. Tt is easy to verify the axioms of a WFI. 0

Lemma 3.9. [1, Proposition 3.25] Every medial WFI-algebra satis-
fies the following identities:
(i) (zey)el=you
(ii) (zo)B1 =1
(ili) (zoy)0Yy =12

Theorem 3.10. Let 4 be a WFI-algebra. Then the following are
equivalent:

(i) ¢ is simulative.
(i) (zey)0y=1,VI,y € G
(ili) ¢ is medial.

Proof. (iil) = (ii) and (ii) = (i) are by Lemma 3.9 and Theorem 3.4.
(i) = (iii) Assume that ¢ is simulative. Note that, for all z,y € G,

(z-yol=(@kel) (yel)=zo(ol)
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andzy=(z61)el)oy=(x61) y. It follows that

(zoy)e(eed) = (zel)-y)ye((ael)- b
(zel)-y)el) ((ae1)-b)
zol)oyel)) ((eol) b)
(zel)ol)-(yol)) ((eol) b)
z-(yol)-(ae1)-b
z-(ael)-(yol) b
(zol)el)-(acl)) ((yo1)-b)
(zel)e(aol)) (yo1l)-b)
(zel)-a)ol) (yel) b
(zel)-a)o((yol)-b)
z8a)O(yob)

(
(
(
(
(

for all z,y,a,b € G. Hence ¢4 is medial. O

Theorem 3.11. Every associative WEFI-algebra is a simulative WFI-
algebra.

Proof. Let & be an associative WFI-algebra. It suffices to show that
¢ satisfies the identity (z©y)Oy = x for all z,y € G (see Theorem 3.10).
Obviously z <X (z ©y) ©y. Now, using (al), (a3), and the associativity,

we have

(zeyeyer = oy oor)=yo(zoy) o)
= ye(ze(yor)=(yer)e(yor) =1,

that is, (zOy) Oy = z. It follows from (ad) that (zr©y) Sy = z. Hence

¢ is simulative. O

The converse of Theorem 3.11 may not be true as shown in the fol-

lowing example.

Example 3.12. Let G = {1, q,b} be a set with the following Cayley

table and Hasse diagram:
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—_—
Q e
o e

Then ¢ := (G;8,1) is a simulative WFI-algebra, but it is not an asso-
ciative WFI-algebra since b9 (a©1) # (b a) & 1.

For a WFI-algebra ¢, consider the set
L(G)={zreG|zol=za}
Note that £(¥) is a subalgebra of 4 (see [1]).

Theorem 3.13. Let & be a WFI-algebra such that L(¥4) = G. Then

the following are equivalent:

(i) ¢ is associative.
i) ze(zoy) =y, Vr,y € G.
(ili) z6 (yo2) =26 (yo ), V2,9,2 € G.
(iv) (zey)cy=12z Y2,y € G.
(v) ¢ is medial.
)

(vi) ¢ is simulative.

Proof. (i) = (ii) is by (a3), (b3) and the associativity.
(i1) = (iii) Note that

I = 20z by (a3)
= z0(z0(z0z)) by (i)
= z6(ze((z6z)01)) since L(Y) =G
= zo((zoz)e(ze1)) by (al)
= z6((z612)62) since L(¥) =G
< zo((ye(zoz))o(yez) by (al), (a2) and (b4)
= z6((z6(y612)0(¥yo2) by (al)

= ( Slyew))e(royosz) byl(al)
Hence 28 (y©z) = 0 (y©2). Similarly, we have 26 (y©2) <X 26 (yOz)
by symmetry. It follows from (ad) that & (y©2) =26 (y© z).
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(iii) = (v) Suppose that (iii) holds. Then
(zey)e(@aed) = be(@o(zoy) =560 (yo (z0a)
= (zoa)o(yob),
and so ¢ is medial.
(iv) & (v) < (vi) See Theorem 3.10.
(iv) = (1) Assume that ¢ is simulative. Then (G,-,1) is a com-
mutative group (see Theorem 3.7). Using the condition £(¥4) = G, we

have
roy=(@ol)oy=y-z=z-y=(yol)ox=y0u,

and hence 20 (y©2) =26 (20y) = 26 (z9y) = (z6y) & 2. Therefore
¢ is associative. This completes the proof. U

Let 4 be a WFI-algebra. For nonnegative integers 7 and 7, we define

a polynomial P ;(z,y) of two variables  and y in G as follows:
PO,O(ZEa y) = (y S l‘) © Zz,

PH”Lj (:E7 y) = (y S 33) © Pi,j (:Ea y)'ﬂ
Pz, y) =(zoy)o Pi,j(m, Y).

Definition 3.14. Let 4, j, m and n be nonnegative integers. A WFI-
algebra ¢ is said to be (i, j;m,n)-mutant if P ;(x,y) = Ppn(y, ) for

all z,y € G.

In particular, if i = j = m = n = 0, then we say that 4 is mutant,

that is, a (0,0;0,0)-mutant WFI-algebra is called a mutant WFIL

Example 3.15. The WFI-algebra ¢ in Example 3.3(2) isa (1,0; 0, 0)-
mutant WFI-algebra, but the WFl-algebra 3 := (Z;6,0) in Exam-
ple 3.3(1) may not be (1,0;0,0)-rautant because P1(2,3) = 4 # 2 =
Poo(3,2).

Theorem 3.16. Every simulative WFI-algebra ¢ is (0,n + 1;n,0)-

mutant for every nonnegative integer n.
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Proof. The proof is by induction on n. Let z,y € G. If n = 0, then

Poa(z,y) = (z0y)© Pool(z,y)
= (zoy)e(lyozr)oz)
= (zoy)ey
= Pooly, ).

Assume that the result is valid for n =k, i.e., Py g+1(z,y) = Pro(y, x).
Then
Fokto(z,y) = (269) 6 Pogya(z,y)
(z©y) © Proly,z)
= Pry10(y, 7).

Hence Pyp+1(z,y) = Pooly, ), that is, 4 is (0,n + 1;n,0)-mutant. O

The second part of Example 3.15 shows that a simulative WFI-
algebra ¢ may not be (1,0;0,0)-mutant.

Theorem 3.17. Every simulative WFI-algebra is (o, m;m,« + 1)-

mutant for all nonnegative integer m, where o = m + i for 1 > 0.

Proof. Let 4 be a simulative WFI-algebra. We first show that for

every nonnegative integer n,
(1) Pn,fl(a:?y) =Y
(H) Pn,’l”H‘l(l')y) =,
(i) Pryin(z,y) = (y© 2) 01U,
(iv) If we use the notation z* © y instead of
k-times

ze(--e@eey) ),

then Poyin(z,y) = (yO ) 0y = Pypnyit1(y,z) for i > 0.

By induction on n, we have

Poolz,y) =yozr)oz=y
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by Theorem 3.10. Suppose that Py x(x,y) =y for n =k > 0. Then

y6z)e Pyisi(z,y)

z)6 ((z6y) S Prilz,y))
) S ((z0y)OY)

)6 =y,

Preyik+1(,y) (
s

(e
= (ye

which proves (i). Note that

Poalz,y) = (z0y)e Polz,y)

= (zoy)o(yor)or)

= (zoy)ey=u=.
Suppose that (ii) is valid for n = k& > 0. Then
(z©Y) © Per1k1(z, )
(zey) o (y© )8 Prpsi(z,y))
(zoy)o(yoz) o)
(zoy)ey=1z.

Pri1pt2(z,y)

Hence (ii) holds. We observe that
Pio(z,y) = (y© ) © Poplz,y) = (yo z) Oy
If (iii) is true for n = &k > 0, then
Peyori1(,y) = (o 2) 8 Pryrpsi(z,y) = (S 2) Oy
by (i). Therefore (iii) is valid. For a fixed n > 0, we have
Puyon(z,y) = Pon(z,9) =y = (yo2)" Sy,
Assume that P, ypn(z,9) = (y©2)* &y for i =% > 0. Then

Pn—}-k-%l,n(ma y) = (ye z) & Pn+k,n(37v y)
yoz)s(lyex)oy)
- eoFloy

From (ii), it follows that

Pn,nJrl(y: SC) =y = (y S x)‘O Sy
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Suppose that Py nyx1(y,2) = (y© z)* Sy for i = k > 0. Then

Pn,n-}-k-l—?(ya 37) = (y S x) S Pn,n-l—k+1(y> ZL‘)
= (yez)o(lyor)oy)
= (yez)oy.

This proves (iv). Finally for a fixed m > 0, let @ = m + ¢ where 1 > 0.
Using (iv), we conclude that Py m(2,y) = Pma+1(y,x). Therefore ¥ is

(a,m;m, @ + 1)-mutant. This completes the proof. O
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