SIMULATIVE AND MUTANT WFI-ALGEBRAS

Young Bae Jun and Seok-Zun Song*

Abstract. The notion of simulative and mutant WFI-algebras is introduced, and several properties are investigated. Characterizations of a simulative WFI-algebra are established. A relation between an associative WFI-algebra and a simulative WFI-algebra is given. Some types for a simulative WFI-algebra to be mutant are found.

1. Introduction

In 1990, W. M. Wu [3] introduced the notion of fuzzy implication algebras (FI-algebra, for short), and investigated several properties. In [2], Z. Li and C. Zheng introduced the notion of distributive (resp. regular, commutative) FI-algebras, and investigated the relations between such FI-algebras and MV-algebras. In [1], Y. B. Jun discussed WFI-algebras (weak fuzzy implication algebras) which are weaker than FI-algebras, and gave a characterization of a WFI-algebra. He introduced the notion of associative (resp. normal, medial) WFI-algebras, and investigated several properties. He gave conditions for a WFI-algebra to be associative/medial, and provided characterizations of associative/medial WFI-algebras, and showed that every associative WFI-algebra is a group in which every element is an involution. He also verified that the class

Received July 28, 2006. Revised November 9, 2006.

²⁰⁰⁰ Mathematics Subject Classification: Primary 53C25.

Key words and phrases :associative, medial, simulative, mutant) WFI-algebra, subalgebra, filter.

^{*} Corresponding author.

of all medial WFI-algebras is a variety. In this paper, we introduce the notion of simulative and mutant WFI-algebras and investigate some properties. We establish characterizations of a simulative WFI-algebra. We give a relation between an associative WFI-algebra and a simulative WFI-algebra. We find some types for a simulative WFI-algebra to be mutant.

2. Preliminaries

We investigate an algebra $\mathscr{G} := (G; \ominus, 1)$, consisting of a set G, a binary operation \ominus and a special element 1, which satisfies the four axioms:

- (a1) $x \ominus (y \ominus z) = y \ominus (x \ominus z)$,
- (a2) $(x \ominus y) \ominus ((y \ominus z) \ominus (x \ominus z)) = 1$,
- (a3) $x \ominus x = 1$,
- (a4) $x \ominus y = y \ominus x = 1 \Rightarrow x = y$.

We call such algebra a WFI-algebra. A nonempty subset S of G is called a subalgebra of \mathscr{G} if $x \ominus y \in S$ whenever $x, y \in S$. A nonempty subset F of G is called a filter of \mathscr{G} if it satisfies:

- \bullet $1 \in F$,
- $x \ominus y \in F$ and $x \in F$ imply $y \in F$ for all $x, y \in G$.

In a WFI-algebra \mathcal{G} , the following are true (see [1]):

- (b1) $x \ominus ((x \ominus y) \ominus y) = 1$,
- (b2) $1 \ominus x = 1 \Rightarrow x = 1$,
- (b3) $1 \ominus x = x$,
- (b4) $x \ominus y = 1 \Rightarrow (y \ominus z) \ominus (x \ominus z) = 1, (z \ominus x) \ominus (z \ominus y) = 1,$
- (b5) $(x \ominus y) \ominus 1 = (x \ominus 1) \ominus (y \ominus 1)$.

We now define a relation " \preceq " on \mathscr{G} by $x \preceq y$ if and only if $x \ominus y = 1$. It is easy to verify that a WFI-algebra is a partially ordered set with respect to \preceq . A WFI-algebra \mathscr{G} is said to be *associative* [1] if it satisfies

 $(x\ominus y)\ominus z=x\ominus (y\ominus z)$ for all $x,y,z\in G.$ A WFI-algebra $\mathscr G$ is said to be medial [1] if it satisfies

$$(x \ominus y) \ominus (a \ominus b) = (x \ominus a) \ominus (y \ominus b)$$

for all $x, y, a, b \in G$.

3. Simulative and Mutant WFI-algebras

For a WFI-algebra \mathcal{G} , the set

$$\mathcal{S}(\mathcal{G}) := \{ x \in G \mid x \leq 1 \}$$

is called the *simulative part* of \mathscr{G} . Let $x, y \in \mathcal{S}(\mathscr{G})$. Then $x \ominus 1 = 1$ and $y \ominus 1 = 1$. It follows from (b5) that

$$(x \ominus y) \ominus 1 = (x \ominus 1) \ominus (y \ominus 1) = 1 \ominus 1 = 1$$

so that $x \ominus y \leq 1$. Hence $x \ominus y \in \mathcal{S}(\mathscr{G})$, which shows that $\mathcal{S}(\mathscr{G})$ is a subalgebra of \mathscr{G} .

Proposition 3.1. The simulative part of a WFI-algebra \mathcal{G} is a filter of \mathcal{G} .

Proof. Obviously, $1 \in \mathcal{S}(\mathcal{G})$. Let $x, y \in G$ be such that $x \in \mathcal{S}(\mathcal{G})$ and $x \ominus y \in \mathcal{S}(\mathcal{G})$. Then $x \leq 1$ and $x \ominus y \leq 1$. It follows from (b5) and (b3) that

$$1 = (x \ominus y) \ominus 1 = (x \ominus 1) \ominus (y \ominus 1) = 1 \ominus (y \ominus 1) = y \ominus 1,$$

that is, $y \leq 1$. Hence $y \in \mathcal{S}(\mathcal{G})$, and the proof is complete.

Definition 3.2. A WFI-algebra \mathcal{G} is said to be *simulative* if it satisfies

(S)
$$x \leq 1 \Rightarrow x = 1$$
.

Note that the condition (S) is equivalent to $S(\mathcal{G}) = \{1\}.$

Example 3.3. (1) Let \mathbb{Z} be the set of integers. Then $\mathfrak{Z} := (\mathbb{Z}; \ominus, 0)$ is a simulative WFI-algebra, where $x \ominus y = y - x$ for all $x, y \in \mathbb{Z}$.

(2) Let $G = \{1, a, b\}$ be a set with the following Cayley table and Hasse diagram:

Then $\mathscr{G} := (G; \ominus, 1)$ is a WFI-algebra (see [1]) which does not satisfy the condition (S).

Theorem 3.4. Let \mathcal{G} be a WFI-algebra. Then the following are equivalent.

- (i) *G* is simulative.
- (ii) $(x \ominus 1) \ominus 1 = x, \forall x \in G$.
- (iii) $(x \ominus 1) \ominus y = (y \ominus 1) \ominus x, \forall x, y \in G.$

Proof. (i) \Rightarrow (ii) Suppose that \mathscr{G} is simulative. Using (a1) and (a3), we have

$$x \ominus ((x \ominus 1) \ominus 1) = (x \ominus 1) \ominus (x \ominus 1) = 1,$$

that is, $x \leq (x \ominus 1) \ominus 1$. It follows from (a3) and (b4) that

$$((x\ominus 1)\ominus 1)\ominus x\preceq x\ominus x=1$$

so from (S) that $((x \ominus 1) \ominus 1) \ominus x = 1$, that is, $(x \ominus 1) \ominus 1 \leq x$. Hence, by (a4), we get $(x \ominus 1) \ominus 1 = x$.

(ii) \Rightarrow (iii) Assume that \mathcal{G} satisfies (ii). Then

$$(x\ominus 1)\ominus y = (x\ominus 1)\ominus ((y\ominus 1)\ominus 1)$$
 by (ii)
= $(y\ominus 1)\ominus ((x\ominus 1)\ominus 1)$ by (a1)
= $(y\ominus 1)\ominus x$, by (ii)

which proves (iii).

(iii) \Rightarrow (i) Suppose that $\mathscr G$ satisfies (iii) and let $x \in G$ be such that $x \preceq 1$. Then

$$x = 1 \ominus x = (1 \ominus 1) \ominus x = (x \ominus 1) \ominus 1 = 1 \ominus 1 = 1$$

and so \mathcal{G} is simulative.

Theorem 3.5. Let \mathcal{G} be a WFI-algebra. Then the following are equivalent.

- (i) *G* is simulative.
- (ii) $x \leq y \Rightarrow x = y$.
- (iii) $(x \ominus y) \ominus (z \ominus y) = z \ominus x, \forall x, y, z \in G.$
- (iv) $(x \ominus y) \ominus 1 = y \ominus x, \forall x, y \in G$.
- (v) \mathscr{G} satisfies the right cancellation law, i.e., $x \ominus z = y \ominus z \Rightarrow x = y$.
- (vi) $(x \ominus y) \ominus (z \ominus y) = (x \ominus z) \ominus 1, \forall x, y, z \in G.$

Proof. (i) \Rightarrow (ii) Suppose that \mathscr{G} is simulative and let $x, y \in G$ be such that $x \leq y$. Then

$$(y \ominus x) \ominus 1 = (y \ominus 1) \ominus (x \ominus 1) \quad \text{by (b5)}$$

$$= (y \ominus (x \ominus y)) \ominus (x \ominus 1) \quad \text{since } x \preceq y$$

$$= (x \ominus (y \ominus y)) \ominus (x \ominus 1) \quad \text{by (a1)}$$

$$= (x \ominus 1) \ominus (x \ominus 1) \quad \text{by (a3)}$$

$$= 1, \quad \text{by (a3)}$$

and so $y \ominus x \in \mathcal{S}(\mathscr{G}) = \{1\}$. Thus $y \ominus x = 1$, i.e., $y \leq x$. It follows from (a4) that x = y.

- (ii) \Rightarrow (iii) Assume that (ii) holds. Since $z \ominus x \preceq (x \ominus y) \ominus (z \ominus y)$, it follows from (ii) that $z \ominus x = (x \ominus y) \ominus (z \ominus y)$.
 - $(iii) \Rightarrow (iv)$ Suppose that (iii) is true. Then

$$(x\ominus y)\ominus 1=(x\ominus 1)\ominus (y\ominus 1)=y\ominus x.$$

(iv) \Rightarrow (v) Assume that (iv) is true and let $x, y, z \in G$ be such that $x \ominus z = y \ominus z$. Then

$$y \ominus x = (x \ominus y) \ominus 1 = (x \ominus y) \ominus ((y \ominus z) \ominus (x \ominus z)) = 1.$$

Similarly, we have $x \ominus y = 1$, and so x = y by (a4).

- (v) \Rightarrow (i) Suppose that \mathscr{G} satisfies the right cancellation law. Let $x \in \mathcal{S}(\mathscr{G})$. Then $x \ominus 1 = 1 = 1 \ominus 1$, and so x = 1 by using (v). Therefore $\mathcal{S}(\mathscr{G}) = \{1\}$ which shows that \mathscr{G} is simulative.
 - $(iv) \Rightarrow (vi)$ If (iv) is true, then (iii) is valid, and so

$$(x \ominus y) \ominus (z \ominus y) = z \ominus x = (x \ominus z) \ominus 1.$$

(vi) \Rightarrow (i) Suppose that (vi) is valid and let $x \in \mathcal{S}(\mathcal{G})$. Then $x \ominus 1 = 1 = x \ominus x$, which implies that

$$x = (x \ominus x) \ominus (1 \ominus x) = (x \ominus 1) \ominus 1 = 1 \ominus 1 = 1.$$

This shows that $S(\mathcal{G}) = \{1\}$. Hence \mathcal{G} is simulative. This completes the proof.

Proposition 3.6. Let \mathscr{G} be a simulative WFI-algebra. Then

$$x \ominus (y \ominus z) = ((x \ominus 1) \ominus y) \ominus z, \forall x, y, z \in G.$$

Proof. For any $x, y, z \in G$, we have

$$x \ominus (y \ominus z) = ((x \ominus 1) \ominus 1) \ominus (y \ominus z)$$
 by Theorem 3.4
 $= y \ominus (((x \ominus 1) \ominus 1) \ominus z)$ by (a1)
 $= y \ominus ((z \ominus 1) \ominus (x \ominus 1))$ by Theorem 3.4
 $= (z \ominus 1) \ominus (y \ominus (x \ominus 1))$ by (a1)
 $= ((y \ominus (x \ominus 1)) \ominus 1) \ominus z$ by Theorem 3.4
 $= ((x \ominus 1) \ominus y) \ominus z$, by Theorem 3.5

which completes the proof.

Theorem 3.7. Let \mathscr{G} be a simulative WFI-algebra and define a binary operation "·" on \mathscr{G} by $x \cdot y = (y \ominus 1) \ominus x$ for all $x, y \in G$. Then $(G, \cdot, 1)$ is a commutative group.

Proof. Using (a1) and Theorem 3.4(iii), we have

$$x \cdot (y \cdot z) = x \cdot ((z \ominus 1) \ominus y) = (((z \ominus 1) \ominus y) \ominus 1) \ominus x$$
$$= (x \ominus 1) \ominus ((z \ominus 1) \ominus y) = (z \ominus 1) \ominus ((x \ominus 1) \ominus y)$$
$$= (z \ominus 1) \ominus ((y \ominus 1) \ominus x) = (x \cdot y) \cdot z,$$

and $x \cdot y = (y \ominus 1) \ominus x = (x \ominus 1) \ominus y = y \cdot x$. It follows from Theorem 3.4(ii) that $x \cdot 1 = 1 \cdot x = (x \ominus 1) \ominus 1 = x$ and

$$(x\ominus 1)\cdot x=x\cdot (x\ominus 1)=((x\ominus 1)\ominus 1)\ominus x=x\ominus x=1.$$

Hence $(G, \cdot, 1)$ is a commutative group with $x \ominus 1$ as the inverse of x. \square

Conversely, we have the following.

Theorem 3.8. If $(G, \cdot, 1)$ is a commutative group, then $\mathscr{G} := (G; \ominus, 1)$ is a simulative WFI-algebra, where $x \ominus y = x^{-1} \cdot y$ for all $x, y \in G$.

Proof. It is easy to verify the axioms of a WFI. \Box

Lemma 3.9. [1, Proposition 3.25] Every medial WFI-algebra satisfies the following identities:

- (i) $(x \ominus y) \ominus 1 = y \ominus x$.
- (ii) $(x \ominus 1) \ominus 1 = x$.
- (iii) $(x \ominus y) \ominus y = x$.

Theorem 3.10. Let \mathscr{G} be a WFI-algebra. Then the following are equivalent:

- (i) \mathcal{G} is simulative.
- (ii) $(x \ominus y) \ominus y = x, \forall x, y \in G.$
- (iii) *G* is medial.

Proof. (iii) \Rightarrow (ii) and (ii) \Rightarrow (i) are by Lemma 3.9 and Theorem 3.4.

(i) \Rightarrow (iii) Assume that $\mathcal G$ is simulative. Note that, for all $x,y\in G$,

$$(x \cdot y) \ominus 1 = (x \ominus 1) \cdot (y \ominus 1) = x \ominus (y \ominus 1)$$

and
$$x \ominus y = ((x \ominus 1) \ominus 1) \ominus y = (x \ominus 1) \cdot y$$
. It follows that

$$(x \ominus y) \ominus (a \ominus b) = ((x \ominus 1) \cdot y) \ominus ((a \ominus 1) \cdot b)$$

$$= (((x \ominus 1) \cdot y) \ominus 1) \cdot ((a \ominus 1) \cdot b)$$

$$= ((x \ominus 1) \ominus (y \ominus 1)) \cdot ((a \ominus 1) \cdot b)$$

$$= (((x \ominus 1) \ominus 1) \cdot (y \ominus 1)) \cdot ((a \ominus 1) \cdot b)$$

$$= x \cdot (y \ominus 1) \cdot (a \ominus 1) \cdot b$$

$$= x \cdot (a \ominus 1) \cdot (y \ominus 1) \cdot b$$

$$= (((x \ominus 1) \ominus 1) \cdot (a \ominus 1)) \cdot ((y \ominus 1) \cdot b)$$

$$= ((x \ominus 1) \ominus (a \ominus 1)) \cdot ((y \ominus 1) \cdot b)$$

$$= (((x \ominus 1) \cdot a) \ominus 1) \cdot ((y \ominus 1) \cdot b)$$

$$= ((x \ominus 1) \cdot a) \ominus ((y \ominus 1) \cdot b)$$

$$= (x \ominus a) \ominus (y \ominus b)$$

for all $x, y, a, b \in G$. Hence \mathscr{G} is medial.

Theorem 3.11. Every associative WFI-algebra is a simulative WFI-algebra.

Proof. Let \mathscr{G} be an associative WFI-algebra. It suffices to show that \mathscr{G} satisfies the identity $(x \ominus y) \ominus y = x$ for all $x, y \in G$ (see Theorem 3.10). Obviously $x \preceq (x \ominus y) \ominus y$. Now, using (a1), (a3), and the associativity, we have

$$((x\ominus y)\ominus y)\ominus x = (x\ominus y)\ominus (y\ominus x) = y\ominus ((x\ominus y)\ominus x)$$
$$= y\ominus (x\ominus (y\ominus x)) = (y\ominus x)\ominus (y\ominus x) = 1,$$

that is, $(x \ominus y) \ominus y \leq x$. It follows from (a4) that $(x \ominus y) \ominus y = x$. Hence \mathscr{G} is simulative.

The converse of Theorem 3.11 may not be true as shown in the following example.

Example 3.12. Let $G = \{1, a, b\}$ be a set with the following Cayley table and Hasse diagram:

Then $\mathscr{G} := (G; \ominus, 1)$ is a simulative WFI-algebra, but it is not an associative WFI-algebra since $b \ominus (a \ominus 1) \neq (b \ominus a) \ominus 1$.

For a WFI-algebra \mathcal{G} , consider the set

$$\mathcal{L}(\mathscr{G}) := \{ x \in G \mid x \ominus 1 = x \}.$$

Note that $\mathcal{L}(\mathcal{G})$ is a subalgebra of \mathcal{G} (see [1]).

Theorem 3.13. Let \mathscr{G} be a WFI-algebra such that $\mathcal{L}(\mathscr{G}) = G$. Then the following are equivalent:

- (i) \mathcal{G} is associative.
- (ii) $x \ominus (x \ominus y) = y, \forall x, y \in G$.
- (iii) $x \ominus (y \ominus z) = z \ominus (y \ominus x), \forall x, y, z \in G.$
- (iv) $(x \ominus y) \ominus y = x, \forall x, y \in G$.
- (v) \mathcal{G} is medial.
- (vi) \mathcal{G} is simulative.

Proof. (i) \Rightarrow (ii) is by (a3), (b3) and the associativity.

 $(ii) \Rightarrow (iii)$ Note that

$$1 = x \ominus x \quad \text{by (a3)}$$

$$= x \ominus (z \ominus (z \ominus x)) \quad \text{by (ii)}$$

$$= x \ominus (z \ominus ((z \ominus x) \ominus 1)) \quad \text{since } \mathcal{L}(\mathcal{G}) = G$$

$$= x \ominus ((z \ominus x) \ominus (z \ominus 1)) \quad \text{by (a1)}$$

$$= x \ominus ((z \ominus x) \ominus z) \quad \text{since } \mathcal{L}(\mathcal{G}) = G$$

$$\preceq x \ominus ((y \ominus (z \ominus x)) \ominus (y \ominus z)) \quad \text{by (a1), (a2) and (b4)}$$

$$= x \ominus ((z \ominus (y \ominus x)) \ominus (y \ominus z)) \quad \text{by (a1)}$$

$$= (z \ominus (y \ominus x)) \ominus (x \ominus (y \ominus z)). \quad \text{by (a1)}$$

Hence $z \ominus (y \ominus x) \preceq x \ominus (y \ominus z)$. Similarly, we have $x \ominus (y \ominus z) \preceq z \ominus (y \ominus x)$ by symmetry. It follows from (a4) that $x \ominus (y \ominus z) = z \ominus (y \ominus x)$.

 $(iii) \Rightarrow (v)$ Suppose that (iii) holds. Then

$$(x \ominus y) \ominus (a \ominus b) = b \ominus (a \ominus (x \ominus y)) = b \ominus (y \ominus (x \ominus a))$$
$$= (x \ominus a) \ominus (y \ominus b),$$

and so \mathcal{G} is medial.

- $(iv) \Leftrightarrow (v) \Leftrightarrow (vi)$ See Theorem 3.10.
- (iv) \Rightarrow (1) Assume that \mathscr{G} is simulative. Then $(G, \cdot, 1)$ is a commutative group (see Theorem 3.7). Using the condition $\mathcal{L}(\mathscr{G}) = G$, we have

$$x \ominus y = (x \ominus 1) \ominus y = y \cdot x = x \cdot y = (y \ominus 1) \ominus x = y \ominus x,$$

and hence $x\ominus(y\ominus z)=x\ominus(z\ominus y)=z\ominus(x\ominus y)=(x\ominus y)\ominus z$. Therefore $\mathscr G$ is associative. This completes the proof.

Let \mathcal{G} be a WFI-algebra. For nonnegative integers i and j, we define a polynomial $P_{i,j}(x,y)$ of two variables x and y in G as follows:

$$P_{0,0}(x,y) = (y \ominus x) \ominus x,$$

$$P_{i+1,j}(x,y) = (y \ominus x) \ominus P_{i,j}(x,y),$$

$$P_{i,j+1}(x,y) = (x \ominus y) \ominus P_{i,j}(x,y).$$

Definition 3.14. Let i, j, m and n be nonnegative integers. A WFI-algebra \mathcal{G} is said to be (i, j; m, n)-mutant if $P_{i,j}(x, y) = P_{m,n}(y, x)$ for all $x, y \in G$.

In particular, if i = j = m = n = 0, then we say that \mathscr{G} is mutant, that is, a (0,0;0,0)-mutant WFI-algebra is called a mutant WFI.

Example 3.15. The WFI-algebra \mathcal{G} in Example 3.3(2) is a (1,0;0,0)-mutant WFI-algebra, but the WFI-algebra $\mathfrak{Z} := (\mathbb{Z};\ominus,0)$ in Example 3.3(1) may not be (1,0;0,0)-mutant because $P_{1,0}(2,3) = 4 \neq 2 = P_{0,0}(3,2)$.

Theorem 3.16. Every simulative WFI-algebra \mathscr{G} is (0, n+1; n, 0)-mutant for every nonnegative integer n.

Proof. The proof is by induction on n. Let $x, y \in G$. If n = 0, then

$$P_{0,1}(x,y) = (x \ominus y) \ominus P_{0,0}(x,y)$$

$$= (x \ominus y) \ominus ((y \ominus x) \ominus x)$$

$$= (x \ominus y) \ominus y$$

$$= P_{0,0}(y,x).$$

Assume that the result is valid for n = k, i.e., $P_{0,k+1}(x,y) = P_{k,0}(y,x)$. Then

$$P_{0,k+2}(x,y) = (x \ominus y) \ominus P_{0,k+1}(x,y)$$

= $(x \ominus y) \ominus P_{k,0}(y,x)$
= $P_{k+1,0}(y,x)$.

Hence $P_{0,n+1}(x,y) = P_{n,0}(y,x)$, that is, \mathscr{G} is (0,n+1;n,0)-mutant. \square

The second part of Example 3.15 shows that a simulative WFI-algebra \mathcal{G} may not be (1,0;0,0)-mutant.

Theorem 3.17. Every simulative WFI-algebra is $(\alpha, m; m, \alpha + 1)$ -mutant for all nonnegative integer m, where $\alpha = m + i$ for $i \geq 0$.

Proof. Let \mathscr{G} be a simulative WFI-algebra. We first show that for every nonnegative integer n,

- (i) $P_{n,n}(x,y) = y$,
- (ii) $P_{n,n+1}(x,y) = x$,
- (iii) $P_{n+1,n}(x,y) = (y \ominus x) \ominus y$,
- (iv) If we use the notation $x^k \ominus y$ instead of

$$\underbrace{x \ominus (\cdots \ominus (x \ominus (x \ominus y)) \cdots)}_{k-\text{times}},$$

then $P_{n+i,n}(x,y) = (y \ominus x)^i \ominus y = P_{n,n+i+1}(y,x)$ for $i \ge 0$.

By induction on n, we have

$$P_{0,0}(x,y) = (y \ominus x) \ominus x = y$$

by Theorem 3.10. Suppose that $P_{k,k}(x,y) = y$ for n = k > 0. Then

$$P_{k+1,k+1}(x,y) = (y \ominus x) \ominus P_{k,k+1}(x,y)$$

$$= (y \ominus x) \ominus ((x \ominus y) \ominus P_{k,k}(x,y))$$

$$= (y \ominus x) \ominus ((x \ominus y) \ominus y)$$

$$= (y \ominus x) \ominus x = y,$$

which proves (i). Note that

$$P_{0,1}(x,y) = (x \ominus y) \ominus P_{0,0}(x,y)$$
$$= (x \ominus y) \ominus ((y \ominus x) \ominus x)$$
$$= (x \ominus y) \ominus y = x.$$

Suppose that (ii) is valid for n = k > 0. Then

$$P_{k+1,k+2}(x,y) = (x \ominus y) \ominus P_{k+1,k+1}(x,y)$$

$$= (x \ominus y) \ominus ((y \ominus x) \ominus P_{k,k+1}(x,y))$$

$$= (x \ominus y) \ominus ((y \ominus x) \ominus x)$$

$$= (x \ominus y) \ominus y = x.$$

Hence (ii) holds. We observe that

$$P_{1,0}(x,y) = (y \ominus x) \ominus P_{0,0}(x,y) = (y \ominus x) \ominus y.$$

If (iii) is true for n = k > 0, then

$$P_{k+2,k+1}(x,y) = (y \ominus x) \ominus P_{k+1,k+1}(x,y) = (y \ominus x) \ominus y$$

by (i). Therefore (iii) is valid. For a fixed $n \geq 0$, we have

$$P_{n+0,n}(x,y) = P_{n,n}(x,y) = y = (y \ominus x)^0 \ominus y.$$

Assume that $P_{n+k,n}(x,y) = (y \ominus x)^k \ominus y$ for i = k > 0. Then

$$P_{n+k+1,n}(x,y) = (y \ominus x) \ominus P_{n+k,n}(x,y)$$
$$= (y \ominus x) \ominus ((y \ominus x)^k \ominus y)$$
$$= (y \ominus x)^{k+1} \ominus y.$$

From (ii), it follows that

$$P_{n,n+1}(y,x) = y = (y \ominus x)^0 \ominus y.$$

Suppose that $P_{n,n+k+1}(y,x) = (y \ominus x)^k \ominus y$ for i = k > 0. Then

$$P_{n,n+k+2}(y,x) = (y \ominus x) \ominus P_{n,n+k+1}(y,x)$$
$$= (y \ominus x) \ominus ((y \ominus x)^k \ominus y)$$
$$= (y \ominus x)^{k+1} \ominus y.$$

This proves (iv). Finally for a fixed $m \geq 0$, let $\alpha = m + i$ where $i \geq 0$. Using (iv), we conclude that $P_{\alpha,m}(x,y) = P_{m,\alpha+1}(y,x)$. Therefore \mathscr{G} is $(\alpha, m; m, \alpha + 1)$ -mutant. This completes the proof.

4. Acknowledgements

The authors are highly grateful to referees for their valuable comments and suggestions helpful in improving this paper.

References

- Y. B. Jun, Weak fuzzy implication algebras, Adv. Stud. Contemp. Math. 7 (2003), no. 1, 41–52.
- [2] Z. Li and C. Zheng, Relations between fuzzy implication algebra and MV-algebra,
 J. Fuzzy Math. 9 (2001), no. 1, 201–205.
- [3] W. M. Wu, Fuzzy implication algebras, Fuzzy Systems Math. 4 (1990), no. 1, 56-63.

Young Bae Jun

Department of Mathematics Education and (RINS)

Gyeongsang National University

Chinju 660-701, Korea

E-mail: skywine@gmail.com

Seok Zun Song

Department of Mathematics

and Research Institute for Basic Sciences

Cheju National University

Cheju 690-756, Korea

E-mail: szsong@cheju.ac.kr