Using Harmonic Analysis and Optimization to Study Macromolecular Dynamics

  • Kim Moon-K. (Department of Mechanical and Industrial Engineering, University of Massachusetts) ;
  • Jang Yun-Ho (Department of Mechanical and Industrial Engineering, University of Massachusetts) ;
  • Jeong Jay-I. (School of Mechanical and Automotive Engineering, Kookmin University)
  • Published : 2006.06.01

Abstract

Mechanical system dynamics plays an important role in the area of computational structural biology. Elastic network models (ENMs) for macromolecules (e.g., polymers, proteins, and nucleic acids such as DNA and RNA) have been developed to understand the relationship between their structure and biological function. For example. a protein, which is basically a folded polypeptide chain, can be simply modeled as a mass-spring system from the mechanical viewpoint. Since the conformational flexibility of a protein is dominantly subject to its chemical bond interactions (e.g., covalent bonds, salt bridges, and hydrogen bonds), these constraints can be modeled as linear spring connections between spatially proximal representatives in a variety of coarse-grained ENMs. Coarse-graining approaches enable one to simulate harmonic and anharmonic motions of large macromolecules in a PC, while all-atom based molecular dynamics (MD) simulation has been conventionally performed with an aid of supercomputer. A harmonic analysis of a macroscopic mechanical system, called normal mode analysis, has been adopted to analyze thermal fluctuations of a microscopic biological system around its equilibrium state. Furthermore, a structure-based system optimization, called elastic network interpolation, has been developed to predict nonlinear transition (or folding) pathways between two different functional states of a same macromolecule. The good agreement of simulation and experiment allows the employment of coarse-grained ENMs as a versatile tool for the study of macromolecular dynamics.

Keywords

References

  1. M. Sela, F. H. White, and C. B. Anfinsen, 'Reductive clevage of disulfide bridges in ribonuclease,' Science, vol. 125, pp. 691-692, 1957 https://doi.org/10.1126/science.125.3250.691
  2. V. Tozzini, 'Coarse-grained models for proteins,' Current Opinion in Structural Biology, vol. 15, no. 2, pp. 144-150, 2005 https://doi.org/10.1016/j.sbi.2005.02.005
  3. H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and P. E. Bourne, 'The protein data bank,' Nucleic Acids Research, vol. 28, pp. 235-242, 2000 https://doi.org/10.1093/nar/28.1.235
  4. M. M. Tirion and D. Ben-Avraham, 'Normal mode analysis of G-actin,' Journal of Molecular Biology, vol. 230, pp. 186-195, 1993 https://doi.org/10.1006/jmbi.1993.1135
  5. M. M. Tirion, 'Large amplitude elastic motions in proteins from a single-parameter, atomic analysis,' Physical Review Letters, vol. 77, pp. 1905-1908, 1996 https://doi.org/10.1103/PhysRevLett.77.1905
  6. A. R. Atilgan, S. R. Durell, R. L. Jernigan, M. C. Demirel, O. Keskin, and T. Bahar, 'Anisotropy of fluctuation dynamics of proteins with an elastic network model,' Biophysical Journal, vol. 80, pp. 505-515, 2001 https://doi.org/10.1016/S0006-3495(01)76033-X
  7. M. K. Kim, G. S. Chirikjian, and R. L. Jernigan, 'Elastic models of conformational transitions in macromolecules,' Journal of Molecular Graphics and Modelling, vol. 21, pp. 151-160, 2002 https://doi.org/10.1016/S1093-3263(02)00143-2
  8. M. K. Kim, R. L. Jernigan, and G. S. Chirikjian, 'Efficient generation of feasible pathways for protein conformational transitions,' Biophysical Journal, vol. 83, pp. 1620-1630, 2002 https://doi.org/10.1016/S0006-3495(02)73931-3
  9. M. K. Kim, W. Li, B. A. Shapiro, and G. S. Chirikjian, 'A comparison between elastic network interpolation and MD simulation of 16S ribosomal RNA,' Journal of Biomolecular Structure and Dynamics, vol, 21, pp. 395-405, 2003 https://doi.org/10.1080/07391102.2003.10506935
  10. M. K. Kim, R. L. Jernigan, and G. S. Chirikjian, 'An elastic network model of HK97 capsid maturation,' Journal of Structural Biology, vol. 143, pp.107-117, 2003 https://doi.org/10.1016/S1047-8477(03)00126-6
  11. A. D. Schuyler and G. S. Chirikjian, 'Normal mode analysis of proteins: A comparison of rigid cluster modes with C-alpha coarse graining,' Journal of Molecular Graphics and Modelling, vol. 22, pp. 183-193, 2004 https://doi.org/10.1016/S1093-3263(03)00158-X
  12. M. K. Kim, G. S. Chirikjian, and R. L. Jernigan, 'Rigid cluster models of conformational transitions in macromolecular machines and assemblies,' Biophysical Journal, vol. 89, pp. 43-55, 2005 https://doi.org/10.1529/biophysj.104.044347
  13. J. I. Jeong, Y. Jang, and M. K. Kim, 'A connection rule for alpha-carbon coarse-grained elastic network models using chemical bond information,' Journal of Molecular Graphics and Modelling, vol. 24, pp. 296-306, 2006 https://doi.org/10.1016/j.jmgm.2005.09.006
  14. C. Breanden and J. Tooze, Introduction to Protein Structure, Garland Publishing, New York 1998
  15. W. Kabsch, H. G. Mannherz, D. Suck, E. Pai, and K. C. Holmes, 'Atomic structure of the actin: I Complex,' Nature, vol. 347, pp. 37-44, 1990 https://doi.org/10.1038/347037a0
  16. H. S. Rye, S. G. Burston, W. A. Fenton, J. M. Beechem, Z. Xu, P. B. Sigler, and A. L. Horwich 'Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL,' Nature, vol. 388, pp. 792-798, 1997 https://doi.org/10.1038/42047
  17. P. B. Sigler, Z. Xu, H. S. Rye, S. G. Burston, W. A. Fenton, and A. L. Horwich, 'Structure and function in GroEL-mediated protein folding,' Annual Review of Biochemistry, vol. 67, pp. 581-608, 1998 https://doi.org/10.1146/annurev.biochem.67.1.581
  18. Z. Xu, A. L. Horwich, and P. B. Sigler, 'The crystal structure of the asymmetric GroEL-GroES-(ADP)$_7$ chaperonin complex,' Nature, vol. 388, pp. 741-750, 1997 https://doi.org/10.1038/41944
  19. Z. Xu and P. B. Sigler, 'GroEL/GroES: Structure and function of a two-stroke folding machine,' Journal of Structural Biology, vol. 124, pp. 129-141, 1998 https://doi.org/10.1006/jsbi.1998.4060
  20. F. U. Hartl and M. Hayer-Hartl, 'Molecular chaperones in the cytosol: From nascent chain to folded protein,' Science, vol. 295, pp. 1852-1858, 2002 https://doi.org/10.1126/science.1068408
  21. J. D. Trent, H. K. Kagawa, and T. Yaoi, 'The role of chaperonins in vivo: The next frontier,' Annals of the New York Academy of Science, vol. 851, pp. 36-47, 1998 https://doi.org/10.1111/j.1749-6632.1998.tb08974.x
  22. H. K. Kagawa, T. Yaoi, L. Brocchieri, R. A. McMillan, T. Alton, and J. D. Trent, 'The composition, structure and stability of a group II chaperonin are temperature regulated in a hyperthermophilic archaeon,' Molecular Miceobiology, vol. 48, pp. 143-156, 2003 https://doi.org/10.1046/j.1365-2958.2003.03418.x
  23. J. D. Trent, H. K. Kagawa, C. D. Paavola, R. A. McMillan, J. Howard, L. Jahnke, C. Lavin, T. Embaye, and C. E. Henze, 'Intracellular localization of a group II chaperonin indicates a membrane-related function,' Proc. of the National Academy of Science of the United States of America, vol. 100, pp. 15589-15594, 2003