International Journal of Control, Automation, and Systems, vol. 4, no. 3, pp. 333-343, June 2006 333

Performance Improvement of Wald Test for Resolving
GPS Integer Ambiguity Using a Baseline-Length Constraint

Eunsung Lee, Sebum Chun, Young Jae Lee*, Teasam Kang, Gyu-In Jee, and Mamoun F. Abdel-Hafez

Abstract: In this paper, the baseline-length information is directly modeled as a measurement
for the Wald test, which speeds up the resolution convergence of the integer ambiguity of GPS
carrier phase measurements. The convergent speed improvement is demonstrated using
numerical simulation and real experiments. It is also shown that the integer ambiguities can be
resolved using only four actual satellite measurements with very reasonable convergence speed,
if the baseline-length information is used just like one additional observable satellite
measurement. Finally, it is shown that the improvement of convergence speed of the Wald test
is due to the increase of the probability ratio with the use of the baseline-length constraint.

Keywords: Baseline-length constraint, integer ambiguity, multiple hypothesis Wald sequential

probability test, real-time kinematics.

1. INTRODUCTION

We can estimate the attitude of the vehicle as well
as the precise 3-dimenional position of a moving
vehicle by multiple GPS antennas attached on the
surface of the vehicle using GPS carrier phase
measurements. To obtain the final position and
attitude, the integer ambiguities should be resolved
first. It is well known that the Real-Time Kinematics
(RTK) has the major bottle neck in the processing of
the integer ambiguity resolution.

During the last decade, a number of integer

ambiguity resolution methods have been suggested. .

Firstly, various resolution techniques have been
proposed to provide static or post-processed solutions
for surveying applications because of the huge
computational time for searching integer ambiguities.
After this stage, RTK ambiguity resolution methods
for determining precise positioning have been
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developed to deal with dynamic applications. These
are the LAMBDA (Least squares AMBiguity
Decorrelation  Adjustment), the FARA  (Fast
Ambiguity Resolution Approach), the Euler and
Landau method, the NIP (Nonlinear Integer
Programming), LSAST (Least Squares Ambiguity
Search Technique), AFM (Ambiguity Function
Method), and ARCE (Ambiguity Resolution with
Constraint Equation) were developed.

In most cases, the GPS integer ambiguity fixing
problem is divided into two distinct parts, ie., the
ambiguity estimation problem and the ambiguity
validation problem [1]. For unknown variables, the
estimation part searches for optimal estimations using
observation equation models. If the optimal estimation
methods, for example, are based on the principle of
least-squares, the task is to find the least-squares
solution for the unknown integer ambiguities. The
second part of GPS ambiguity fixing problem is the
validation of the estimated ambiguities. This part is
usually independent of the estimation part, and very
important in its own right. It determines whether the
estimated integer ambiguity solution is to be accepted
or not.

We can always compute integer ambiguity solutions,
whether they are true or not. Therefore, the basic
question addressed by the validation process is
whether we accept the estimated integer ambiguity as
the solution or not.

On the other hand, the multiple hypotheses Wald
sequential probability test MHWSPT) is a method for
validating the integer ambiguity during the initial
ambiguity resolution [2]. For convenience, hereafter
Wald test means the MHWSPT. This is essentially a
nonlinear sequential filter which, after conditioning
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the measurements, is optimal. References [2] and [3]
have shown that the Wald test is a well-proven and
efficient integer ambiguity resolution algorithm. The
biggest advantage of the Wald test is that this method
has one simple unified step for estimation and
validation in fixing the integer ambiguities of GPS
carrier phase measurements.

The attitude estimation is basically to determine the
relative position, more specifically the baseline
vectors between multiple GPS antennas. If the
baseline-length is not long enough (for example, less
than several hundred meters), the code measurements
are not good enough because of the poor angular
resolution resulting from the poor resolution of the
relative position. In most cases, to determine the
attitude of a moving vehicle, the baseline vector
estimation is used based on the GPS carrier phase
measurements. Therefore, the real-time attitude deter-
mination using the GPS carrier phase measurements
has the same fundamental problem that is the integer
ambiguity resolution in real time. On the other hand,
since, in most cases, the GPS antennas are fixed on
the body surface of the moving vehicle, the relative
distances between antennas remain almost constant in
spite of vehicle motion, or stay within a reasonable
region of error. Furthermore, the relative distances of
the antennas measured beforehand. In this case, the
pre-measured distances between antennas are consid-
ered to be independent and are very valuable informa-
tion for the attitude determination of the vehicle. This
baseline-length information has been mostly used for
setting up or reducing the searching space of the inte-
ger ambiguities, or validating the estimated integers,
some details are summarized in the following section.

In this paper, the baseline-length information is
directly used in producing residuals of measurements
for the Wald test, which reduces very much the

convergence time for 2xT Ax = —AxT Ax resolving
integer ambiguity.

In Section 2, a brief review of using the baseline-
length information is discussed. In Section 3,
mathematical model of GPS is summarized and a
measurement model with baseline-length constraint is
explained. In Section 4, the Wald test is explained. In
Section 5, the probability increment ratio is
introduced and the proof of the improvement of the
convergence performance is shown. In Section 6, the
results of experimental tests are explained. The final
conclusions are summarized in Section 7.

2. APPLICATION OF THE BASELINE-
LENGTH CONSTRAINT
USING MULTIPLE ANTENNAS

The methods using the baseline-length constraint

between GPS antennas can be divided into three types.

The first is using the baseline-length constraint to

reduce search volume of GPS carrier phase integer
ambiguities [5]. The second method uses it for
simplification of relative equations with baseline
geometry [6]. The last one is using the baseline-length
constraint to reduce the number of possible ambiguity
solution candidates with the relationship of each
ambiguity [7]. The first and second methods are
usually used for attitude determination and the third
one is used for positioning. If the known baseline
lengths are used, the minimum number of satellites
can be three when conventional GPS receivers are
used for attitude determination [4]. The first attempt
to use the baseline length is the development of a GPS
multi-antenna system for the attitude determination,
the three dimensional search space of GPS carrier
ambiguities is reduced to the two dimensional search
space [5]. There can be many carrier phase measure-
ments, but the numbers of independent measurement
basis exist. Suppose that four primary satellites have
been chosen and the length of the baseline vector from
the master antenna to the remote antenna is known,
there are three related double difference carrier phase
observation equations. After the first search volume is
determined using the length of the baseline vector, the
second search volume is determined smaller than the
other cases. After the second volume is determined,
the last search volume dose not need be solved when
the length of the baseline vector is known. The second
method is applied to the attitude determination
problem when the vehicle has flexile surface. When
the six channel receiver was practically developed and
attitude was determined, the baseline-length constraint
was used [6]. Suppose that the baseline vector, x,
rotates along circle in space. Here the baseline vector

"is moved by the vector Ax . By simultaneously

considering each Ax vector, the center of the sphere

" can be located along with the initial position of the

baseline. After the geometry constraint of baseline

vector is applied, 2xT Ax=-AxT Ax remains. The
third method is used when the carrier measurement
equations are solved with known baseline lengths and
relations between the ambiguities in the measurement
equations can be applied. This application can reduce
the ambiguity candidates [7]. If there is a network
which is connected by 3 reference stations, there are
three ambiguity sets i.e. Ny, Np, N3. As ambiguity sets
can make the equation, N; + M, + N3 =0, we can
calculate the other ambiguity set from ones.
According to the knowledge of reference station
position, the baseline lengths can be calculated.
Multiple fixed receivers can be used to estimate and
reduce noise for carrier phase measurements at each
receiver, using a network adjustment methodology [8]

The new method, proposed in this paper, uses the
baseline length as a new additive measurement when
the Wald test is applied for eliminating integer
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ambiguities. So the measurement matrix H is changed,
and the new measurement matrix includes direction
cosines with the baseline vector. As the result, this
new measurement reduces the estimation errors and
provides more precise position.

3. MATHMETICAL MODELING

3.1. Measurement equations

In general, high-grade GPS receivers provide several
kinds of measurement information which contains
many types of errors (ionospheric, tropospheric delay
erc). In RTK application, GPS carrier measurements
are used throughout the whole process, but GPS code
measurements are mostly used for guessing an initial
position. To mitigate the errors of carrier phase
measurements, double differencing is used commonly.

y=H-dc+AN +vy, (1)

where dx=[5x5y 52]T

: relative position from nominal position on
cartesian coordinates
double differenced GPS carrier measurements

&

: measurement matrix
carrier phase wave length
: double differenced integer ambiguity

7% double differenced GPS carrier measurements

=N E

noise.

To apply the hypothesis test in resolving integer
ambiguity, we plan to hypothesize the measurement
residuals of the ambiguity candidates. The residual
and its covariance of i-th hypothesis is defined
respectively as

’}:y_)’}izy_(H'dﬁ"'/%Ni)’ )
where
y: double differenced GPS carrier measurements
y: estimated double differenced GPS carrier
measurements
H ; measurement matrix
dx : estimated relative position
y . double differenced GPS carrier measurements
A: carrier phase wave length
N: estimated double differenced integer ambiguity,
L
Qr=Qy_Qj):PH'Qy7 (3)
where

0, : covariance of residual

0,: covariance of measurements

05 covariance of estimated measurements

Py=1-H-(H"-0;' 1) -HT .0}

3.2. Measurement model with baseline-length constant

In this sub-section, the use of the baseline-length
constraint to the double differenced carrier phase
measurements is briefly described. Let us assume that
two GPS antennas are fixed on the surface of a vehicle
to determine the attitude as Fig. 1, and that the relative
distance between the two antennas is measurable very
accurately in advance and remains constant if
structure of the vehicle is rigid. The initial position of
antenna B is estimated using code measurements at
the beginning of the process.

It is going to be claimed that the measured baseline
length can be used as an additional information to the
double differenced carrier phase measurements. (4)
represents the nonlinear baseline measurement
equation of the two antenna configuration represented
in Fig. 1.

Ly :\/(xA _xB)2 +(yA -yB)2 +(ZA ‘23)2 ,(4)
where

[x4,¥4,24]: position of antenna A
[xg,¥p,2zg]: position of antenna B

£, : baseline length.

The ”;I“aylor series expansion of (4) with respect to
the initial position of antenna B, i.e. By, is given as

ZBL_g(): (5)

_XaTXpo _Ya=IB0 _ZATZBO |4\ [OT,
ZO 60 EO

where

dx: position difference between B and Bo

Xpo, ¥YBo, Zgo: Nominal position of antenna Bo

£, : nominal baseline length between antenna A and
Bo

H.O.T : high order terms.

(6) is the linearized form of (5) with respect to the
guessed initial position using code measurements,
which is to be used as the baseline-length constraint

Initial Position of

‘6 0 roy,

{ %AntennaB
oqutt -
Antenna A True Position of

J Antenna B

EBL

Fig. 1. Basic configuration of two antennas.
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equation.
Yo =Hp dx+vy, (6)
where
Hor = _Xq4~Xpo Y4~ Yo Z47Zpg
BL I} ¢ ¢
0 0 0

¥y, © baseline length error measurement, yg.= fp
£,

vy, - measurement error of base line length.

Since the state vectors, dx, of (1) (i.e. the double
differenced carrier phase measurements) and (6) (i.e.
the baseline-length constraint equation) are the same,
these two equations can be combined as in (7), which
is called as the all measurement equation.

H ' N
e P
yBL HBL O vBL > (7)

where

H N v,
yA:[yG},HAzli Gil’NA:[i jl,VA:{ G:|‘
YBL Hp, 0 VBIL

As the result, the baseline-length constraint defined
in (6) is considered as an additional measurement to
improve the characteristics of the convergence of
probability functions of the Wald test. Now let’s
consider two different cases of measurement
information. The first one is using the GPS carrier
phase measurements only, and the other one is using
GPS carrier phase measurements plus the baseline-
length constraint.

The least square solution and its covariance of each
case can be summarized as (8) and (9).

Case 1: the GPS carrier phase measurements only

s (T N T ol
de—(HGQyGHG) HGQyGyG’

y (8)
O = (HgQ;GIHG) :

o, G is covariance when only GPS carrier phase

measurements are used.
Case 2: Case of GPS carrier phase measurements
with the baseline-length constraint.

-1

dx,= (Q;G +H;LQ;,:LHBL) ( ;dec +H1§LQ;,:LHBL)’

-1
de,, = (HgQ;GlHG+H;LQ;1 HBL) . )

B,

covariance when GPS carrier phase

QyG iS

measurements and baseline-length constraint are used.

As can be seen in (9), addition of the baseline-
length constraint to measurement information helps to
reduce the final covariance of the estimator.

4. WALD TEST AND INTEGER AMBIGUITY
RESOLUTION

The Wald test is a special case of the multiple
hypothesis Shiryayev sequential probability ratio test,
which determines the most likely event from a set of
hypotheses, assuming that the event is true for all time
[3].

In 1947, Wald was developed as a general
sequential probability test [9], and it has been
generalized and applied to fault detection and
isolation by Malladi et al. in 1999 [10]. In 2001, the
first application of the method to GPS carrier phase
integer ambiguity resolution has been conducted by
Wolfe et al. [2]. In 2002, to increase the efficiency of
computation (i.e. to reduce the hypothesis sets), it has
been combined with LAMBDA method by Abdel-
Hafez et al. [3].

The Wald test can be used to find the conditional
probability that each integer ambiguity under
consideration is true. Hence it can be said that the
Wald test is a statistical method used for validating the
integer ambiguity. Eventually residual is used to
obtain the probability of a certain integer hypothesis
as a candidate of the correct integer ambiguity. For
more details, refer References [2] and [3].

The Wald test recursively calculates the probability
of each integer hypothesis under consideration that the
hypothesis is the correct integer ambiguity set using
the measurements up to the current time k. That is
Fi(k), i=0, .... m-1. This is explicitly expressed as (10),

D ik =1)- f;(k)
j=1

where

F(k) = probability of the hypothesis being true
f;(k) = probability density function of residual of
the i-th hypothesis.

Theoretically, the probability density function of
residual can be any shape. However, if the residual is
assumed as a Gaussian distribution, then the density
function is modeled as follows.

ﬁ-(k)=Cexp{—%{n(k)TQ;‘ri(k)}}, (1)

where
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F (k) > Threshold

R(k)=£(k)

[ e |
I

f,(k)~c-exp{—%{a(kfg,‘(k)«k)m

By=EED )
Y k-1 £, (k)
§=l

Fig. 2. Flow chart of the wald test.

F: (k) = probability of the hypothesis being true
J;(k) = probability density function of residual of
the i-th hypothesis.

C is a constant for Gaussian density function and
r:(k) is the residual with its covariance (,. It is

necessary to calculate (11) for each hypothesis being
the true integer ambiguity. Using (11), all the
probability functions of all hypotheses are then
updated at each epoch whenever new measurements
are received. The algorithm terminates as soon as the
probability of one hypothesis reaches one (or
practically a desired threshold, say 0.999), while the
others approach zero (or practically very close to zero,
say 0.001). These phenomena occur at the same time,
since the sum of all probabilities of hypotheses is
always equal to one due to the definition of the
probability function. Finally we select the integer
ambiguity set of the hypothesis as the true one. Fig. 2
shows the flow chart of the Wald test.

5. CHARACTERISTICS OF PROBABILITY
INCREMENT RATIO

5.1. Definition of probability increment ratio

The new variable is defined to prove the
improvement of convergence speeds, which means
that the true hypothesis makes the probability
converge faster than the others.

Let us define the new variable L; be a probability

increment ratio of each hypothesis.

_ Fi(k)
R (12)

(12) is defined for all i-th hypothesis, where i = 0,

..., m-1, and m is the number of total hypothesis. Let
set the 0-th hypothesis be true.

In the case of the true hypothesis, the probability
ratio of (12) is as follows

Iy = Rk) _  flk)
Fy(k-1) md
S )
J=0 (13)
C 1 T -1
-exp{ S in®"O; ”o(k)}}
_ - ,
m-1
where A=ZF](k)fJ(k)
j=0

For every hypothesis except for the true one, the
probability increment ratio is defined as follows

__ Rk fik)
COR(E-1)

%Fj (k)£ (k)

(14)
C- exp{—%{r,-(k)T Qr_lri(k)}}

- b

A

where i=1,---,m—1.

It is important to point out that A in the
denominator of (14) is the same as that of (13). To
prove that the true hypothesis converges faster than
the other ones, the values of the probability ratio of
every hypothesis need to be compared with that of the
true hypothesis.

C-exp{—%{ro(k)TQilro(k)}}

L A4 (15)
L C-exp{—%{rf(k)TQ,Irxk)}}
A
=exp {_%[{”0 (k)T Q;l”o (k)} - {r,-(k)T Qr—lri(k)”} s

where again i=1,---,m-1.
{ro(k)TQ;lro(k)} —{rl-(k)T ;‘r,.(k)} in (15) determines

whether the probability ration is greater than 1 or not.
To determine the value, the statistical characters of #
and »; must be considered beforehand. When r(k) has
zero mean, the covariance Q,, and the degree of
freedom n, ro(k)’ O, ro(k) has the centralized chi-
square distribution. In this case, the mean of (k)" O,
ro(k) is n and its variance is 2n. If »; has the mean y; ,

the covariance r(k)” O, ri(k) has a non-centralized
chi-square distribution, which has non-centralized
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parameter & ,where 5,»2 is yiTQr_ ! 4; and g is the
bias of the i-th hypothesis from the true hypothesis.

Then the mean is n+5,-2 and the variance is

2n+48211].

E[{n )" 0 'm0} - (70" 07 (0} ] is 62 For

every i-th hypothesis, —5,2 <0 is always satisfied.

Since [{ro W O W}~ {r (e Q,_]r,-(k)}] is less than
zero, exp{‘%[{”o 0" o7 '} - {ri(k)TQ;‘r,(k)}}}

. . L

is greater than 1, which means that =% >1 for every
i

i. Thus, the probability increment ratio of the true

hypothesis converges faster than the others in average.

5.2. Characteristics of probability increment ratio
using baseline-length constraint

In this sub-section, it is shown that the addition of the

baseline-length constraint to measurement information

contributes to speed up resolution convergence.

We want to prove that when the hypothesis is true,
the convergence speed of the probability function of
the all information case that uses carrier measure-
ments and baseline-length information is faster than

that of the GPS carrier phase measurements only case.

Let us define the probability ratio of all information
case for the correct hypothesis as follows.

o= szzlf’i)l) — Fao ()
’ j;oFA,j(k)fA,j(k)
Cavexp| o @ Gilrao(h)
= p ,
where B = :nZ;FAJ ) (k).

In the case of every hypothesis except for the true
hypothesis, the probablhty ratio is deﬁned as follows,
where i=1,-~-,m—1.

L Failk) fAz()
MFL (k-

z fAj )

J=
G exp{—f{ 10 QA,rA,(k)}}

When all information measurements are used, the
ratio of the probability ratio can be defined as

Lol I aef Ot} 7 Gl

In the same way, when GPS measurements are only
used, the ratio of the probability ratio is defined as

@—exp{——[{rco(@ G500} - [ ®) Qgrrg,(@}]}

L, 2
L L Lo/ L
If =405 200 o correct, =204 o1 will be
Ly, Lg; Lgo/ LG i

satisfied. Therefore, this can be expressed using
residuals and their covariances as

%f 3 e"p{“ L {rao® g ] ~{ras 7 Qi) }
% e@{—%[{rao(kf QE;,IrVG,O(k)} {rG,(k) QGrer(k) }
1 BVA,o(k)TQZ,lrrA,o(k)}—{rA,,-(k) ,rA,(k)

—exp]——
2 _[{rc,o(k)T QE;,lrrG,o(k)} {U, k) QG,rG,(k)}J
(16)
where

E[{m,o W) Qa0 (0} = {ra o) Qg 0} |
(n + 514 i ) §A Qs
E[{rc,o K 05 16.0 (0] ~ {1610 Q3 )} |
’(’“‘5%:'):_5(271':
5Az Ha,i QAr:qu’
82 = Ha,i Oake,i -
Here 11,4, is a bias of i-th hypothesis from the true
hypothesis H 4, using all information, and 4 ; is a

bias of i-th hypothesis from the true hypothesis H

using the GPS measurements only.
By the way, since GPS carrier measurements and
baseline length information do not have any

correlation, all the non-centered parameters, 53,1‘ , can

be expressed as

2 _ T A1
5A,i =Hyqi Oygrbiy

T -1
i | (Qer 0O Hg i

— an
KB 0 Opr,| |45,

Tl T =1
= Ui QrMcit MaLi CBLrHBL-
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The difference of two non central parameters is
Hpr, iTQ[;L ~Mpri»> and it is greater than zero. It

) T -1
means that &4 ; -G, = #p, i Opr, +#pr; >0, and

2 o2 T -1 :
also —(5A,i —5G,i)=—ﬂBL, i OpL, ripr; <0 is true.

Therefore, in average

1 [ rao®" Qabraot®) - {ra ) G |

2\ {0 0" QB 6000 - {5 0 O, |

This means
Lo
Ly;
= >1. (18)
Lo
Lg,
Finally, we obtain that
L L
4,0 GO (19)
Ly Lg;

As a conclusion, if the hypothesis is true, the
probability function of the GPS carrier phase
measurements with the baseline-length constraint
information converges faster in average than GPS
carrier phase measurements only case.

5. EXPERIMENTAL TEST OF INTEGER
AMBIGUITY RESOLVING PERFORMANCE

5.1. Result of numerical simulation test

A numerically simulated data have been used to test
the performance of the Wald test with and without the
dynamic information constraint. In this experiment, a
total of nine satellites are observable and the relative
distance between two GPS antennas, i.e. the baseline
length, is set to 9m. Fig. 3 shows an example of the
configuration of antennas. Fig. 4 shows the
circumstance of the experiment. Figs. 5 and 6 show
the number of visible satellites and PDOP.

To obtain precise position using carrier phase
measurements, the double difference method between
measurements is used in most case. In this case, the
number of observable satellites must be more than
four or five. In this case the visible satellite number is
8. The PDOP is about 1.72.

Fig. 7 shows the difference of convergence speeds
with and without the baseline-length constraint. In this
result, six visible satellites are used.

As we can see at Fig. 7, the baseline-length
constraint information improves the convergent speed

24 ya
=1 (\\
= . .
.2 D+ ( ‘
g
<
~ _1 .
S
24
\\
3 ~
4 \
2
7
x 10 o 1]
2 2
Y Axis (m) 44

Fig. 4. The circumstance of the experiment.
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Fig. 5. The number of visible satellites.
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True Hypbthesis

F value of each hypothesis

i 4
binsat il
150 200 250
Time(sec)

(a) Without baseline-length constraint.
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0.9 ™ True Hypothesis 1

0.6 R

0.5 B

F value of each hypothesis

0.3 B

0.2 R

0.1 ﬂ, -

0 50 100 150 200 250
Time(sec)

(b) With baseline-length constraint,

Fig. 7. Comparison of convergence speeds with and
without baseline-length constraint (Numerically
simulated data).

considerably, and it stays within the probability very
constantly once it enters into the threshold region. Fig.
8 shows the difference of convergence speeds with
and without baseline-length constraint with varying
the number of the observable GPS satellites.

The  baseline-length  constraint  information
improves the convergent speeds much so that it
converges within 10 seconds with six to eight
observable GPS satellites, while all the cases are very
sluggish for the not-using-it cases.

To obtain precise position using carrier phase
measurements, the double difference method between
measurements is used in most case. In this case, the
number of observable satellites must be more than
four or five, depending on the method used. In general,
it can be said that it is extremely difficult to fix the
integer ambiguity with four observable satellites only.
However, as we proposed, the baseline-length
constrint information can be considered as an
additional measurement of one observable satellite.

Fig.

Fig

F value of each hypothesis

F value of each hypothesis

F value of each hypothesis

09F 8 sat \‘] |
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04t ]
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0.8 El
07 B
06 B
05 B

04y - ‘ ﬁ

0.3 _ 1

0 L ] ] L
0 50 100 150 200 250
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(b) With baseline-length constraint.

8. Comparison of convergence speeds with and
without baseline-length constraint with vary-
ing the number of the observable satellites
(Numerically simulated data).

\'True Hypothesis 1

i
. . - ! I L
6 8 10 12 14 16 18 20
Time(sec)

. 9. Performance of integer ambiguity resolution
with four observable satellites using the
baseline-length constraint (Numerically simu-
lated data).
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Therefore, we can resolve the integer ambiguities
using four actual satellite measurements only.

If we use the baseline-length constraint, we can
resolve the integer ambiguity with four observable
satellites only as can be seen at Fig. 9. Furthermore,
the convergence speed is compared to the case of
seven, eight, or more number of observable satellites.

5.2. Result of real experiments

The real GPS carrier phase data have been taken
using two dual frequency receivers at the rooftop of
the engineering building of Konkuk University, Seoul,
Korea, on March 26, 2003. The data have been
sampled every second. All the cases using the real
data are almost the same as the numerical simulation
cases. In other words, when we use the baseline-
length constraint, the convergence speed is much
better than the case without it.

Fig. 10 shows the difference of convergence speeds
with and without baseline-length constraint with
varying the number of the observable GPS satellites.
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Fig. 10. Comparison of convergence speeds with and
without baseline-length constraint (Real data).
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Fig. 11. Comparison of convergence speeds with and
without Dbaseline-length constraint  with
varying the number of the observable
satellites (Real data).

Fig. 11 also shows that the baseline-length
constraint makes a much bigger contribution for a
fewer observable satellite case.

Once again we can see that we can obtain a high
quality convergence performance in spite of the short
number of observable satellites. It is impossible to fix
the integer ambiguity with four observable satellites
without the constraint.

When we consider the baseline-length information,
it can be variable more or less because of flexibility of
the vehicle body or other reasons. The length variation
can be either random or biased, or both. This kind of
variable length will become the error of the baseline-
length information. Fig. 12 shows the convergence
characteristics of the true hypothesis with various
baseline length biases. It shows the sensitivity of the
developed Wald test algorithm with respect to biased
errors respectively. According to the test, the
algorithm works successfully for the bias case of
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baseline-length.

smaller than 50% of L1 carrier wave length, which is
about 9.5cm. Practically, this kind of biased baseline
constraints can be considered as the deformed body
where surface multiple-GPS antennas are fixed.

7. CONCLUSIONS

In this paper, using numerically simulated and
experimental data, it has been shown that the
performance of integer ambiguity resolution of the
Wald test can be improved considerably if the
baseline-length constraint information is used as
additional measurement information. A better and
more stable convergence trend has been obtained.
Furthermore, since the proposed baseline-length
constraint information can be considered as an
additional measurement of one observable satellite, it
has been shown that the integer ambiguities can be
resolved using four actual satellite measurements only
with very reasonable convergence speed. It has been
proven that the major contribution of applying the
baseline-length constraint has resulted from the
increment of the probability ratio, and the algorithm
has been shown that it works successfully for the bias
error which is smaller than 50% of L1 carrier wave
length. This proposed algorithm can be used for the
real time precise positioning as well as the attitude
determination using GPS carrier phase measurements.
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