참고문헌
- Adams, P. and Ayers, W. 1979. Ecology of Sclerotinia species. Phytopathology 69:895-898
- Boland, G and Smith, E. 1991. Variation in cultural morphology and virulence among protoplast regenerated isolates of Sclerotinia sclerotiorum. Phytopathology 81:766-770 https://doi.org/10.1094/Phyto-81-766
- EI-Tarabily, K., Soliman, M., Nassar, A., AI-Hassani, H., Sivasithamparam, K., McKenna, F. and Hardy, GE StJ. 2000. Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes. Plant Pathol. 49:573-583 https://doi.org/10.1046/j.1365-3059.2000.00494.x
- Freeman, J., Ward, E., Carmen, C. and Alastair, M. 2002. A polymerase chain reaction (PCR) assay for the detection of inoculum of Sclerotinia sclerotiorum. Eur. J. Plant Pathol. 108:877-886 https://doi.org/10.1023/A:1021216720024
- Gupta, R., Saxena, R., Chaturvedi, P. and Virdi, J. 1995. Chitinase production by Streptomyces viridificans: its potential in fungal cell wall lysis. J. Appl. Bact. 78:378-383 https://doi.org/10.1111/j.1365-2672.1995.tb03421.x
- Hus, S. and Lockwood, J. 1975. Powder chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Appl. Microbiol. 29 :422-426
- Lumsden, R. 1979. Histology and physiology of pathogenesis in plant diseases caused by Sclerotinia spp. Phytopathology, 69:890-895 https://doi.org/10.1094/Phyto-69-890
- Ordentlich, A., Elad, Y.a nd Chet, I. 1988. The role of chitinase of Serratia marcescens in biological control of Sclerotium rolfsii. Phytopathology 78:84-88
- Osofee, H., Hameed, K. and Mahasneh, A. 2005. Relatedness among indigenous members of Sclerotinia, sclerotiorum by mycelial compatibility and RAPD analysis in the Jordan Valley. Plant Pathol. J. 21:106-107 https://doi.org/10.5423/PPJ.2005.21.2.106
- Patterson, C. and Grogan, R. 1985. Differences in epidemiology and control of lettuce drop caused by Sclerotinia minor and Sclerotinia sclerotiorum. Plant Dis. 69:766-770 https://doi.org/10.1094/PD-69-766
- Purdy, L. 1979. Sclerotinia sclerotiorum: History, diseases and Symptomology, host range, geographic distribution, and impact. Phytopathology, 69:875-880 https://doi.org/10.1094/Phyto-69-875
- Saadoun, I. and AL-Momani, F. 1997. Streptomyces from Jordan soils active against Agrobacterium tumefaciens. Actinomycetes 8:30-36
- Saadoun, I. and Gharaibeh, R. 2002. The Streptomyces flora of Jordan and its potential as a source of antibiotics active against antibiotic resistant Gram-negative bacteria. World J. Microbial Biotech.18:465-470 https://doi.org/10.1023/A:1015531205871
- Saadoun, I., Hameed, K., AL-Momani, F., Malkawi, H., Meqdam, M. and Mohammad, M. 2000. Characterization and analysis of antifungal activity of soil Streptomycetes isolated from north Jordan. Egypt. J. Microbiol. 35 :463-471
- Shirling, E. B. and Gottlieb, D. 1964. Methods for characterization of Streptomyces species. Inter. J. Syst. Bacteriol. 16:313-340
- Singh, P., Shin, Y, Park, C. and Chung, Y 1999. Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology, 89:92-99 https://doi.org/10.1094/PHYTO.1999.89.1.92
- Subbarao, K. 1998. Progress toward integrated management of lettuce drop. Plant Dis. 82:1068-1078 https://doi.org/10.1094/PDIS.1998.82.10.1068
피인용 문헌
- Biological control of postharvest diseases of apples, peaches and nectarines byBacillus subtilisS16 isolated from halophytes rhizosphere vol.22, pp.3, 2012, https://doi.org/10.1080/09583157.2012.658553
- Isolation and characterization of a new Burkholderia pyrrocinia strain JK-SH007 as a potential biocontrol agent vol.27, pp.9, 2011, https://doi.org/10.1007/s11274-011-0686-6
- Suppression ofPhytophthorablight on pepper (Capsicum annuumL.) by bacilli isolated from brackish environment vol.21, pp.11, 2011, https://doi.org/10.1080/09583157.2011.618264
- Susceptibility of localAgrobacterium tumefaciens strains to streptomycetes isolates from Jordan soils vol.48, pp.3, 2008, https://doi.org/10.1002/jobm.200700352
- Secondary metabolites produced by Propionicimonas sp. (ENT-18) induce histological abnormalities in the sclerotia of Sclerotinia sclerotiorum vol.55, pp.6, 2010, https://doi.org/10.1007/s10526-010-9295-9
- Complete genome analysis of Serratia marcescens RSC-14: A plant growth-promoting bacterium that alleviates cadmium stress in host plants vol.12, pp.2, 2017, https://doi.org/10.1371/journal.pone.0171534
- Biological control of Phytophthora blight in red pepper (Capsicum annuum L.) using Bacillus subtilis vol.24, pp.7, 2008, https://doi.org/10.1007/s11274-007-9585-2
- Evaluation of the toxicity of Streptomyces aburaviensis (R9) extract towards various agricultural pests vol.02, pp.04, 2011, https://doi.org/10.4236/as.2011.24063
- Production and characterization of endoglucanase secreted by Streptomyces capoamus isolated from Caatinga vol.15, pp.42, 2016, https://doi.org/10.5897/AJB2015.14610
- Isolation, characterisation and antifungal activity of marine actinobacteria from Goa and Kerala, the west coast of India vol.45, pp.9, 2012, https://doi.org/10.1080/03235408.2012.655149
- Crop molds and mycotoxins: Alternative management using biocontrol vol.104, 2017, https://doi.org/10.1016/j.biocontrol.2016.10.004
- Chitinase-producing bacteria and their role in biocontrol vol.3, pp.3, 2017, https://doi.org/10.3934/microbiol.2017.3.689
- In Vitro Antifungal Activity of Burkholderia gladioli pv. agaricicola against Some Phytopathogenic Fungi vol.13, pp.12, 2012, https://doi.org/10.3390/ijms131216291
- Selection of a Streptomyces strain able to produce cell wall degrading enzymes and active against Sclerotinia sclerotiorum vol.50, pp.5, 2012, https://doi.org/10.1007/s12275-012-2060-2
- In vitro study of biological activity of four strains of Burkholderia gladioli pv. agaricicola and identification of their bioactive metabolites using GC–MS vol.24, pp.2, 2017, https://doi.org/10.1016/j.sjbs.2016.04.014