DOI QR코드

DOI QR Code

마이크로웨이브 플라즈마 화학기상증착법에 의한 탄소나노튜브의 성장특성

Growth of Carbon Nanotubes by Microwave Plasma Enhanced Chemical Vapor Deposition

  • 최성헌 (군산대학교 전자정보공학부) ;
  • 이재형 (군산대학교 전자정보공학부)
  • 발행 : 2006.06.01

초록

Carbon nanotubes (CNTs) were grown with a microwave plasma enhanced chemical vapor deposition (MPECVD) method, which has been regarded as one of the most promising candidates for the synthesis of CNTs due to the vertical alignment, the low temperature and the large area growth. MPECVD used methane ($CH_4$) and hydrogen ($H_2$) gas for the growth of CNTs. 10 nm thick Ni catalytic layer were deposited on the Ti coated Si substrate by RF magnetron sputtering method. In this work, the pretreatment was that the Ni catalytic layer in different microwave power (600, 700, and 800 W). After that, CNTs deposited on different pressures (8, 12, 16, and 24 Torr) and grown same microwave power (800 W). SEM (Scanning electron microscopy) images showed Ni catalytic layer diameter and density variations were dependent with their pretreatment conditions. Raman spectroscopy of CNTs shows that $I_D/I_G$ ratios and G-peak positions vary with pretreatment conditions.

키워드

참고문헌

  1. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, 'Nanotube molecular wires as chemical sensors', Science, Vol.283, p.512, 1999 https://doi.org/10.1126/science.283.5410.1999
  2. P. G. Collins and A. Zettl, 'Unique characteristics of cold cathode carbon-nanotube-matrix field emitters', Phys. Rev. B, Vol. 55, p. 9391, 1997 https://doi.org/10.1103/PhysRevB.55.9391
  3. J.-M. Bonard, F. Maier, T. Stockli, A. Chatelain, W. A. de Heer, J.-P. Salvetat, and L. Forro, 'Field emission properties of multiwalled carbon nanotubes', Ultramicroscopy, Vol. 73, p. 7, 1998 https://doi.org/10.1016/S0304-3991(97)00129-0
  4. W. J. Jong, S. H. Lai, K. H. Hong, H. N. Lin, and H. C. Shih, 'The effect of catalysis on the formation of one-dimensional carbon structured materials', Diam. Relat. Mater., Vol. 11, p. 1019, 2002 https://doi.org/10.1016/S0925-9635(01)00551-9
  5. C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. L. de la Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer, 'Atomic structure and electronic properties of single-walled carbon', Nature, Vol. 388, p. 756, 1997 https://doi.org/10.1038/41972
  6. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, 'Science of Fullerenesand Carbon Nanotubes', Academic Press, New York, Chap. 19, 1996
  7. Y. C. Choi, Y. M. Shin, Y. H. Lee, B. S. Lee, G.-S. Park, W. B. Choi, N. S. Lee, and J. M. Kim, 'Controlling the diameter, growth rate, and density of vertically aligned carbon nanotubes synthesized by microwave plasma-enhanced chemical vapor deposition', Appl. Phys. Lett., Vol. 76, p. 2367, 2000 https://doi.org/10.1063/1.126348
  8. Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, and P. N. Provencio, 'Synthesis of large arrays of well-aligned carbon nanotubes on glass', Science, Vol. 282, p. 1105, 1998 https://doi.org/10.1126/science.282.5391.1105
  9. C. J. Lee, D. W. Kim, T. J. Lee, Y. C. Choi, Y. S. Park, W. S. Kim, Y. H. Lee, W. B. Choi, N. S. Lee, J. M. Kim, Y. G. Choi, and S. C. Yu, 'Synthesis of uniformly distributed carbon nanotubes on a large area of Si substrates by thermal chemical vapor deposition', Appl. Phys. Lett., Vol. 75, p. 1721, 1999 https://doi.org/10.1063/1.124895
  10. X. Ma, E. Wang, W. Zhou, D. A. Jefferson, J. Chen, S. Deng, N. Xu, and J. Yuan, 'Polymerized carbon nanobells and their field-emission properties', Appl. Phys. Lett., Vol. 75, p. 3105, 1999 https://doi.org/10.1063/1.125245
  11. X. Ma and E. G. Wang, 'CNx/carbon nanotube junctions synthesized by microwave chemical vapor deposition', Appl. Phys. Lett., Vol. 78, p. 978, 2001
  12. Y. Ouyang and Y. Fang, 'Temperature dependence of the raman spectra of carbon nanotubes with 1064 nm excitation', Physica E, Vol. 24, p. 222, 2004 https://doi.org/10.1016/j.physe.2004.04.034
  13. B. B. Wang, S. I. Lee, X. Z. Xu, S. H. Choi, H. Yan, B. Zhang, and W. Hao, 'Effects of the pressure on growth of carbon nanotubes by plasma-enhanced hot filament CVD at low substrate temperature', Appl. Surf. Sci., Vol. 236, p. 6, 2004 https://doi.org/10.1016/j.apsusc.2004.04.024
  14. C. M. Hsu, C. H. Lin, H. J. Lai, and C. T. Kuo, 'Root growth of multi-wall carbon nanotubes by MPCVD', Thin Soild film, Vol. 471, p. 140, 2005 https://doi.org/10.1016/j.tsf.2004.05.004
  15. W. Li, H. Zhang, C. Wang, Y. Zhang, L. Xu, K. Zhu, and S. Xie, 'Raman characterization of aligned carbon nanotubes produced by thermal decomposition of hydrocarbon vapor', Appl. Phys. Lett., Vol. 70, p. 2684, 1997
  16. F. Tuinstra and J. L. Koenig, 'Raman spectrum of graphite', J. Chern. Phys., Vol. 53, p. 1126, 1970
  17. D. S. McCulloch, S. Prawer, and A. Hoffman, 'Structural investigation of xenon-ion-beam-irradiated glassy carbon', Phys. Rev. B, Vol. 50, p. 5905, 1994 https://doi.org/10.1103/PhysRevB.50.5905
  18. Y. C. Choi, D. J. Bae, Y. H. Lee, B. S. Lee, G. S. Park, W. B. Choi, N. S. Lee, and J. M. Kim, 'Growth of carbon nanotubes by microwave plasma-enhanced chemical vapor deposition at low temperature', J. Vac. Sci. Technol. A, Vol. 18, p. 1864, 2000 https://doi.org/10.1116/1.582437
  19. M. Yoshikawa, G. Katagiri, H. Ishida, A. Ishitani, and T. Akamatsu, 'Raman spectra of diamondlike amorphous carbon films', J. Appl. Phys., Vol. 64, p. 6464, 1988
  20. M. Meyyappan, 'Carbon Nanotubes Science And Application', CRC press, p. 110, 2005
  21. Y. Shimizu, T. Sasaki, T. Kodaira, K. Kawanguchi, K Terashima, and N. Koshizaki, 'Effect of plasma conditions on fabrication of multi-walled carbon nanotubes grown perpendicularly on Hastelloy $C276{\circledR}$', Diam. Relat. Mater., Vol. 14, p. 11, 2005 https://doi.org/10.1016/j.diamond.2004.06.038