Electrostatically-Driven Polysilicon Probe Array with High-Aspect-Ratio Tip for an Application to Probe-Based Data Storage

초소형 고밀도 정보저장장치를 위한 고종횡비의 팁을 갖는 정전 구동형 폴리 실리콘 프로브 어레이 개발

  • Published : 2006.06.01

Abstract

In this study, a probe array has been developed for use in a data storage device that is based on scanning probe microscope (SPM) and MEMS technology. When recording data bits by poling the PZT thin layer and reading them by sensing its piezoresponse, commercial probes of which the tip heights are typically shorter than $3{\mu}m$ raise a problem due to the electrostatic forces occurring between the probe body and the bottom electrode of a medium. In order to reduce this undesirable effect, a poly-silicon probe with a high aspect-ratio tip was fabricated using a molding technique. Poly-silicon probes fabricated by the molding technique have several features. The tip can be protected during the subsequent fabrication processes and have a high aspect ratio. The tip radius can be as small as 15 nm because sharpening oxidation process is allowed. To drive the probe, electrostatic actuation mechanism was employed since the fabrication process and driving/sensing circuit is very simple. The natural frequency and DC sensitivity of a fabricated probe were measured to be 18.75 kHz and 16.7 nm/V, respectively. The step response characteristic was investigated as well. Overshoot behavior in the probe movement was hardly observed because of large squeeze film air damping forces. Therefore, the probe fabricated in this study is considered to be very useful in probe-based data storages since it can stably approach toward the medium and be more robust against external shock.

Keywords

References

  1. Barrett, R. C. and Quate, C. F., 'Charge Storage in a Nitride-Oxide-Silicon Medium by Scanning Capacitance Microscopy,' J. Appl. Phys., Vol. 70, No. 5, pp. 2725-2733, 1991 https://doi.org/10.1063/1.349388
  2. Sato, A. and Tsukamoto, Y., 'Nanornetre-Scale Recording and Erasing with the Scanning Tunneling Microscope,' Nature, Vol. 363, pp. 431-432, 1993 https://doi.org/10.1038/363431a0
  3. Takimoto, K., Kawade, H., Kishi, E., Yano, K., Sakai, K., Hatanaka, K., Eguchi, K. and Nakagiri, T., 'Switching and Memory Phenomena in LangmuirBlodgett Films with Scanning Tunneling Microscope,' Appl. Phys. Lett., Vol. 61, No. 25, pp. 3032-3034, 1992 https://doi.org/10.1063/1.108000
  4. Hidaka, T., Maruyama, T., Saitoh, M., Mikoshiba, N., Shimizu, M., Shiosaki, T., Wills, L. A., Hiskes, R., Dicarolis, S. A. and Amano, J., 'Formation and Observation of 50 nm Polarized Domains in $PbZr_{1_ x}Ti_xO_3$ Thin Film using Scanning Probe Microscope,' Appl. Phys. Lett., Vol. 68, No. 17, pp. 2358-2359, 1996 https://doi.org/10.1063/1.115857
  5. Lee, K., Shin, H., Moon, W. K., Jeon, J. U. and Pak, Y. E., 'Detection Mechanism of Spontaneous Polarization in Ferroelectric Thin Films using Electrostatic Force Microscopy,' Jpn. J. Appl. Phys., Vol. 38, No. 3A, pp. 264-266, 1999 https://doi.org/10.1143/JJAP.38.L264
  6. Shin, H., Lee, K., Lim, G, Jeon, J. D., Pak, Y. E., Hong, S. and No, K., 'Formation and Observation of Ferroelectric Domains in $PbZr_{1_x}Ti_xO_3$(PZT) Thin ?Films using Atomic Force Microscopy,' Proc. 6th SPIE's Ann. Int. Symp. on Smart Structures and Materials, Switzerland, Vol. 3675, pp. 94-102, 1999
  7. Hong, S., Woo, J., Shin, H., Jeon, J. U., Pak, Y. E., Colla, E. L., Setter, N., Kim, E. and No, K., 'Principle of Ferroelectric Domain Imaging using Atomic Force Microscope,' J. Appl. Phys., Vol. 89, No.2, pp. 1377-1386, 2001 https://doi.org/10.1063/1.1331654
  8. Imura, R., Shintani, T., Nakamura, K. and Hosaka, S., 'Nanoscale Modification of Phase Change Materials with Near-Field Light,' Microelectronic Eng., Vol. 30, pp. 387-390, 1996 https://doi.org/10.1016/0167-9317(95)00269-3
  9. Ma, L. P., Yang, W. J., Xue, Z. Q. and Pang, S. J., 'Data Storage with 0.7nm Recording Marks on Crystalline Organic Thin Film by a Scanning Tunneling Microscope,' Appl. Phys. Lett., Vol. 73, No. 6, pp. 850-852, 1998 https://doi.org/10.1063/1.122022
  10. Binnig, G, Despont, M., Drechsler, U., Haberle, W., Lutwyche, M., Vettiger, P., Mamin, H. J., Chui, B. W. and Kenny, T. W., 'Ultrahigh-Density Atomic Force Microscopy Data Storage with Erase Capability,' Appl. Phys. Lett., Vol. 74, No.9, pp. 1329-1331, 1999 https://doi.org/10.1063/1.123540
  11. Vettiger, P., Brugger, J., Despont, M., Drechsler, U., Duig, U., Haberle, W., Lutwyche, M., Rothuizen, H., Stutz, R., Widmer, R. and Binnig, G, 'Ultrahigh Density, High-Data-Rate NEMS-Based AFM Data Storage System,' Microelectronic Eng., Vol. 46, pp. 11-17, 1999 https://doi.org/10.1016/S0167-9317(99)00006-4
  12. Itoh, T., Ohashi, T. and Suga, T., 'Noncontact Scanning Force Microscopy using a Direct-Oscillating Piezoelectric Microcantilever,' J. Vac. Sci. Technol. B, Vol. 14, No.3, pp. 1577-1581,1996 https://doi.org/10.1116/1.589193
  13. Minne, S. C., Yaralioglu, G, Manalis, S. R., Adams, J. D., Zesch, J., Atalar, A. and Quate, C. F., 'Automated Parallel High-Speed Atomic Force Microscopy,' Appl. Phys. Lett., Vol. 72, No. 18, pp. 2340-2342, 1998 https://doi.org/10.1063/1.121353
  14. Marcus, R. B., Ravi, T. S., Gmitter, T, Chin, K., Liu, D., Orvis, W. J., Ciarlo, D. R., Hunt, C. E. and Trujillo, J., 'Formation of Silicon Tips with <1nm Radius,' Appl. Phys. Lett. Vol. 56, No.3, pp. 236-238, 1990 https://doi.org/10.1063/1.102841