Development of Genus- and Species-Specific Probe Design System for Pathogen Detection Based on 23S rDNA

  • Park Jun-Hyung (Busan Genome Center) ;
  • Park Hee-Kyung (Institute for Genomic Medicine, GeneIn. Co., Ltd.) ;
  • Kang Byeong-Chul (Division of Applied Bioengineering, Dongseo University) ;
  • Song Eun-Sil (Institute for Genomic Medicine, GeneIn. Co., Ltd.) ;
  • Jang Hyun-Jung (Institute for Genomic Medicine, GeneIn. Co., Ltd.) ;
  • Kim Cheol-Min (Busan Genome Center, Medical Research Institute, Department of Biochemistry, College of Medicine, Pusan National University)
  • Published : 2006.05.01

Abstract

Amplification by universal consensus sequences in pathogenic bacterial DNA would allow rapid identification of pathogenic bacteria, and amplification of genus-specific and species-specific sequences of pathogenic bacterial DNA might be used for genotyping at the genus and species levels. For design of probes for molecular diagnostics, several tools are available as stand-alone programs or as Web application. However, since most programs can design only a few probe sets at one time, they are not suitable for large-scale and automatic probes design. Therefore, for high-throughput design of specific probes in diagnostic array development, an automated design tool is necessary. Thus, we developed a Web-based automatic system for design of genus-specific and species-specific probes for pathogen detection. The system is available at http://www.miprobe.com.

Keywords

References

  1. Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402 https://doi.org/10.1093/nar/25.17.3389
  2. Dennis A. B., I. Karsch-Mizrachi, D. J. Lipman, J. Ostel, and D. L. Wheeler. 2005. GenBank. Nucleic Acids Res. 33: D34-D38 https://doi.org/10.1093/nar/gni032
  3. Dong, X., L. Guangshan, W. Liyou, Z. Jizhong, and X. Ying. 2002. Primegens: Robust and efficient design of genespecific probes for microarray analysis. Bioinformatics 18: 1432-1437 https://doi.org/10.1093/bioinformatics/18.11.1432
  4. Fukushima, M., K. Kakinuma, H. Hayashi, H. Nagai, K. Ito, and R. Kawaguchi. 2003. Detection and identification of Mycobacterium species isolates by DNA microarray. J. Clin. Microbiol. 41: 2605-2615 https://doi.org/10.1128/JCM.41.6.2605-2615.2003
  5. Gunter, R., D. Michaela, F. M. Thomas, and D. Christoph. 2001. PrimeArray: Genome-scale primer design for DNA-microarray construction. Bioinform. Applic. Note 17: 98-99 https://doi.org/10.1093/bioinformatics/17.1.98
  6. Haas, S., M. Vingron, A. Poustka, and S. Wiemann. 1998. Primer design for large scale sequencing. Nucleic Acids Res. 26: 2006-2012
  7. Park, H. K., H. J. Jang, E. S. Song, C. H. Chang, M. K. Lee, S. K. Jeong, J. H. Park, B. C. Kang, and C. M. Kim. 2005. Detection and genotyping of mycobacterium species from clinical isolates and specimens by oligonucleotide array. J. Clin. Microbiol. 43: 1782-1788 https://doi.org/10.1128/JCM.43.4.1782-1788.2005
  8. Patel, J. B. 2004. 16S rRNA Gene Sequencing for Bacterial Pathogen Identification in the Clinical Laboratory. Molecular Diagnosis. Vol. 6. No. 4
  9. Rouillard, J.-M., C. J. Herbert, and M. Zuker. 2002. OligoArray: Genome-scale oligonucleotide design for microarrays. Bioinform. Applic. Note 18: 486-487 https://doi.org/10.1093/bioinformatics/18.3.486
  10. Choi, J.-H., H.-Y. Jung, H.-S. Kim, and H.-G. Cho. 2000. PhyloDraw: A phylogenetic tree drawing system. Bioinform. Applic. Note 16: 1056-1058 https://doi.org/10.1093/bioinformatics/16.11.1056
  11. Kampke, T., M. Kieninger, and M. Mecklenburg. 2001. Efficient primer design algorithm. Bioinformatics 17: 214-225 https://doi.org/10.1093/bioinformatics/17.3.214
  12. McCabe, K. M., Y.-H. Zhang, B.-L. Huang, E. A. Wager, and E. R. B. McCabe. 1999. Bacterial species identification after DNA amplification with a universal primer pair. Molec. Genet. Metab. 66: 205-211 https://doi.org/10.1006/mgme.1998.2795
  13. Kim, B. S., H. M. Oh, H. J. Kang, S. S. Park, and J. S. Chun. 2004. Remarkable bacterial diversity in the tidal flat sediment as revealed by 16S rDNA analysis. J. Microbiol. Biotechnol. 14: 205-211
  14. Kim, M. K., H. S. Kim, B. O. Kim, S. Y. Yoo, J. H. Seong, D. K. Kim, S. E. Lee, S. J. Choe, J. C. Park, B. M. Min, M. J. Jeong, D. K. Kim, Y. K. Shin, and J. K. Kook. 2004. Multiplex PCR using conserved and species-specific 16S rDNA primers for simultaneous detection of Fusobacterium nucleatum and Actinobacillus actinomycetemcomitans. J. Microbiol. Biotechnol. 14: 110-115
  15. Lee, J. W., I. J. Jun, H. J. Kwun, K. L. Jang, and J. H. Cho. 2004. Direct identification of Vibrio vulnificus by PCR targeting elastase gene. J. Microbiol. Biotechnol. 14: 284-289 https://doi.org/10.1159/000082838
  16. Park, H., H. Jang, C. Kim, B. Chung, C. L. Chang, S. K. Park, and S. Song. 2000. Detection and identification of mycobacteria by amplification of the internal transcribed spacer regions with genus- and species-specific PCR primers. J. Clin. Microbiol. 38: 4080-4085
  17. Proutski, V. and E. C. Holmes. 1996. Primer Master: A new program for the design and analysis of PCR primers. Comput. Appl. Biosci. 12: 253-255
  18. Anthony, R. M. 2000. Rapid diagnosis of bacteremia by universal amplification of 23S ribosomal DNA followed by hybridization to an oligonucleotide array. J. Clin. Microbiol. 38: 781-788
  19. Ryou, S. M., J. M. Kim, J. H. Yeon, H. L. Kim, H. Y. Go, E. K. Shin, and K. S. Lee. 2005. Species-specific cleavage by RNase E-like enzymes in 5S rRNA maturation. J. Microbiol. Biotechnol. 15: 1100-1105
  20. Soini, H. and J. M. Musser. 2001. Molecular diagnosis of mycobacteria. Clin. Chem. 47: 809-814
  21. Weckx, S., P. De Rijk, C. Van Broeckhoven, and J. Del- Favero. 2004. SNPbox:Web-based high-throughput primer design from gene to genome. Nucleic Acids Res. 32: 170-172
  22. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680 https://doi.org/10.1093/nar/22.22.4673