Analysis of Bacterial Diversity and Community Structure in Forest Soils Contaminated with Fuel Hydrocarbon

  • Ahn Jae-Hyung (School of Agricultural Biotechnology, Seoul National University) ;
  • Kim Mi-Soon (School of Agricultural Biotechnology, Seoul National University) ;
  • Kim Min-Cheol (School of Agricultural Biotechnology, Seoul National University) ;
  • Lim Jong-Sung (National Instrumentation Center for Environmental Management, Seoul National University) ;
  • Lee Goon-Taek (National Instrumentation Center for Environmental Management, Seoul National University) ;
  • Yun Jun-Ki (Research Institute of Technology, Samsung Corporation) ;
  • Kim Tae-Sung (Ecosystem Disturbance Assessment Division, Nature and Ecology Research Department, National Institute of Environmental Research) ;
  • Kim Tae-San (Genetic Resources Division, National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Ka Jong-Ok (School of Agricultural Biotechnology, Seoul National University)
  • Published : 2006.05.01

Abstract

Oil spill was found in 1999 from a diesel storage facility located near the top of Baekun Mountain in Uiwang City. Application of bioremediation techniques was very relevant in removing oil spills in this site, because the geological condition was not amenable for other onsite remediation techniques. For efficient bioremediation, bacterial communities of the contaminated site and the uncontaminated control site were compared using both molecular and cultivation techniques. Soil bacterial populations were observed to be stimulated to grow in the soils contaminated with diesel hydrocarbon, whereas fungal and actinomycetes populations were decreased by diesel contamination. Most of the dieseldegrading bacteria isolated from contaminated forest soils were strains of Pseudomonas, Ralstonia, and Rhodococcus species. Denaturing gradient gel electrophoresis (DGGE) analysis revealed that the profiles were different among the three contaminated sites, whereas those of the control sites were identical to each other. Analysis of 16S rDNA sequences of dominant isolates and clones showed that the bacterial community was less diverse in the oil-contaminated site than at the control site. Sequence analysis of the alkane hydroxylase genes cloned from soil microbial DNAs indicated that their diversity and distribution were different between the contaminated site and the control site. The results indicated that diesel contamination exerted a strong selection on the indigenous microbial community in the contaminated site, leading to predominance of well-adapted microorganisms in concurrence with decrease of microbial diversity.

Keywords

References

  1. Alexander, M. 1982. Most probable number methods for microbial populations, pp. 815-820. In A. L. Page (ed.), Method of Soil Analysis, Part 2: Chemical and Microbiological Properties. Soil Science Society of America, Wisconsin, U.S.A
  2. Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipmann. 1990. Basic local alignment tool. J. Mol. Biol. 215: 403-410 https://doi.org/10.1016/S0022-2836(05)80360-2
  3. Atlas, R. M. and C. E. Cerniglia. 1995. Bioremediation of petroleum pollutants: Diversity and environmental aspects of hydrocarbon biodegradation. BioScience 45: 332-338 https://doi.org/10.2307/1312494
  4. Atlas, R. M., P. D. Boehm, and J. A. Calder. 1981. Chemical and biological weathering of oil from the Amoco Cadiz spillage, within the littoral zone. Estuar. Coast Shelf Sci. 12: 589-608 https://doi.org/10.1016/S0302-3524(81)80085-0
  5. Bakken, L. R. and R. A. Olsen. 1987. The relationship between cell size and viability of soil bacteria. Microb. Ecol. 13: 103-114 https://doi.org/10.1007/BF02011247
  6. Balkwill, D. L. 1990. Deep-aquifer microorganisms, pp. 183-211. In D. P. Labeda (ed.), Isolation of Biotechnological Organisms from Nature. McGraw-Hill Publ. Co., New York, U.S.A
  7. Bossert, I. and R. Bartha. 1984. The fate of petroleum in soil ecosystems, pp. 434-476. In R. M. Atlas (ed.), Petroleum Microbiology. Macmillan Publishing Co., New York, U.S.A
  8. Buckley, D. H. and T. M. Schmidt. 2002. Exploring the biodiversity of soil - a microbial rain forest, p. 183-208. In J. T. Staley and A. L. Reysenbach (eds.), Biodiversity of Microbial Life. Wiley-Liss, New York, U.S.A.
  9. Chaineau, C. H., J. Morel, J. Dupont, E. Bury, and J. Oudot. 1999. Comparison of the fuel oil biodegradation potential of hydrocarbon-assimilating microorganisms isolated from a temperate agricultural soil. Sci. Total Environ. 227: 237-247 https://doi.org/10.1016/S0048-9697(99)00033-9
  10. Cho, M. J., Y. K. Kim, and J. O. Ka. 2004. Molecular differentiation of Bacillus spp. antagonistic against phytopathogenic fungi causing damping-off disease. J. Microbiol. Biotechnol. 14: 599-606
  11. de Bruijn, F. J. 1992. Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl. Environ. Microbiol. 58: 2180-2187
  12. Felske, A., A. Wolterink, R. V. Lis, and A. D. L. Akkermans. 1998. Phylogeny of the main bacterial 16S rRNA sequences in Drentse A grassland soils (The Netherlands). Appl. Environ. Microbiol. 64: 871-879
  13. Felsenstein, J. 2004. PHYLIP (Phylogenetic Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle
  14. Ferris, M. J., G. Muyzer, and D. M. Ward. 1996. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl. Environ. Microbiol. 62: 340-346
  15. Floodgate, G. 1984. The fate of petroleum in marine ecosystems, pp. 355-398. In R. M. Atlas (ed.), Petroleum Microbiology. Macmillan Publishing Co., New York, U.S.A
  16. Fujii, T., T. Narikawa, K. Takeda, and J. Kato. 2004. Biotransformation of various alkanes using Escherichia coli expressing an alkane hydroxylase system from Gordonia sp. TF6. Biosci. Biotechnol. Biochem. 68: 2171-2177 https://doi.org/10.1271/bbb.68.2171
  17. Gelsomino, A., A. C. Keijzer-Wolters, G. Cacco, and J. D. van Elsas. 1999. Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis. J. Microbiol. Methods 38: 1-15 https://doi.org/10.1016/S0167-7012(99)00054-8
  18. Hattori, T., H. Mitsui, H. Haga, N. Wakao, S. Shikano, K. Gorlach, Y. Kasahara, A. El-Beltagy, and R. Hattori. 1997. Advances in soil microbial ecology and the biodiversity. Antonie van Leeuwenhoek 72: 21-28 https://doi.org/10.1023/A:1000201017238
  19. Johnson, D. B., S. Rolfe, K. B. Hallberg, and E. Iversen. 2001. Isolation and phylogenetic characterization of acidophilic microorganisms indigenous to acidic drainage waters at an abandoned Norwegian copper mine. Environ. Microbiol. 3: 630-637 https://doi.org/10.1046/j.1462-2920.2001.00234.x
  20. Kasai, Y., H. Kishira, K. Syutsubo, and S. Harayama. 2001. Molecular detection of marine bacterial populations on beaches contaminated by the Nakhodka tanker oil-spill accident. Environ. Microbiol. 3: 246-255 https://doi.org/10.1046/j.1462-2920.2001.00185.x
  21. Kim, M. S., J. H. Ahn, M. K. Jung, J. H. Yu, D. H. Joo, M. C. Kim, H. C. Shin, T. S. Kim, T. H. Ryu, T. S. Kim, D. H. Kim, and J. O. Ka. 2005. Molecular- and cultivationbased characterization of bacterial community structure in rice field soil. J. Microbiol. Biotechnol. 15: 1087-1093
  22. Kim, T. S., M. S. Kim, M. K. Jung, J. H. Ahn, M. J. Joe, K. H. Oh, M. H. Lee, M. K. Kim, and J. O. Ka. 2005. Analysis of plasmid pJP4 horizontal transfer and its impact on bacterial community structure in natural soil. J. Microbiol. Biotechnol. 15: 376-383
  23. Kohno, T., Y. Sugimoto, K. Sei, and K. Mori. 2002. Design of PCR primers and gene probes for general detection of alkane-degrading bacteria. Microb. Environ. 17: 114-121 https://doi.org/10.1264/jsme2.17.114
  24. Lane, D. J. 1991. 16S/23S rRNA sequencing, pp. 115-148. In E. Stackebrandt and M. Goodfellow (eds.), Nucleic Acid Techniques in Bacterial Systematics. John Wiley and Sons, Chichester, England
  25. Leahy, J. G. and R. R. Colwell. 1990. Microbial degradation of hydrocarbons in the environment. Microbiol. Rev. 54: 305-315
  26. Ludwig, W., S. H. Bauer, I. Held, G. Kirchhof, R. Schulze, I. Huber, S. Spring, A. Hartmann, and K.-H. Schleifer. 1997. Detection and in situ identification of representatives of a widely distributed new bacterial phylum. FEMS Microbiol. Lett. 153: 181-190 https://doi.org/10.1111/j.1574-6968.1997.tb10480.x
  27. MacNaughton, S. J., J. R. Stephen, A. D. Venosa, G. A. Davis, Y.-J. Chang, and D. C. White. 1999. Microbial population changes during bioremediation of an experimental dil spill. Appl. Environ. Microbiol. 65: 3566-3574
  28. Maidak, B. L., J. R. Cole, T. G. Lilburn, C. T. Parker Jr, P. R. Saxman, J. M. Stredwick, G. M. Garrity, B. Li, G. J. Olsen, S. Pramanik, T. M. Schmidt, and J. M. Tiedje. 2000. The RDP (Ribosomal Database Project) continues. Nucleic Acids Res. 28: 173-174 https://doi.org/10.1093/nar/28.1.173
  29. Margesin, R. and F. Shinner. 1999. Biological decontamination of oil spills in cold environments. J. Chem. Technol. Biotechnol. 74: 381-389 https://doi.org/10.1002/(SICI)1097-4660(199905)74:5<381::AID-JCTB59>3.0.CO;2-0
  30. Norris, T. B., J. M. Wraith, R. W. Castenholz, and T. R. McDermott. 2002. Soil microbial community structure across a thermal gradient following a geothermal heating event. Appl. Environ. Microbiol. 68: 6300-6309 https://doi.org/10.1128/AEM.68.12.6300-6309.2002
  31. Pinholt, Y. S., S. Struwe, and A. Kjoller. 1979. Microbial changes during oil decomposition in soil. Holarct. Ecol. 2: 195-200
  32. Powell, S. M., J. P. Bowman, I. Snape, and J. S. Stark. 2003. Microbial community variation in pristine and polluted nearshore Antarctic sediments. FEMS Microbiol. Ecol. 45: 135-145 https://doi.org/10.1016/S0168-6496(03)00135-1
  33. Rojo, F. 2005. Specificity at the end of the tunnel: Understanding substrate length discrimination by the alkB alkane hydroxylase. J. Bacteriol. 187: 19-22 https://doi.org/10.1128/JB.187.1.19-22.2005
  34. Roling, W. F. M., M. G. Milner, D. M. Jones, K. Lee, F. Daniel, R. J. P. Swannell, and I. M. Head. 2002. Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl. Environ. Microbiol. 68: 5537-5548 https://doi.org/10.1128/AEM.68.11.5537-5548.2002
  35. Saul, D.J., J. M. Aislabie, C. E. Brown, L. Harris, and J. M. Foght. 2005. Hydrocarbon contamination changes the bacterial diversity of soil from around Scott Base, Antarctica. FEMS Microbiol. Ecol. 53: 141-155 https://doi.org/10.1016/j.femsec.2004.11.007
  36. Sei, K., Y. Sugimoto, K. Mori, H. Maki, and T. Kohno. 2003. Monitoring of alkane-degrading bacteria in a sea-water microcosm during oil degradation by polymerase chain reaction based on alkane-catabolic genes. Environ. Microbiol. 5: 517-522 https://doi.org/10.1046/j.1462-2920.2003.00447.x
  37. Smits, T. H. M., M. Rothlisberger, B. Witholt, and J. B. van Beilen. 1999. Molecular screening for alkane hydroxylase genes in gram-negative and gram-positive strains. Environ. Microbiol. 1: 307-317 https://doi.org/10.1046/j.1462-2920.1999.00037.x
  38. Smit, E., P. Leefang, S. Gommans, and J. Van Den Broek. 2001. Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Appl. Environ. Microbiol. 67: 2284-2291 https://doi.org/10.1128/AEM.67.5.2284-2291.2001
  39. Sotsky, J. B., C. W. Greer, and R. M. Atlas. 1994. Frequency of genes in aromatic and aliphatic hydrocarbon biodegradation pathways within bacterial populations from Alaskan sediments. Can. J. Microbiol. 40: 981-985 https://doi.org/10.1139/m94-157
  40. Suzuki, M., T. Hayakawa, J. P. Shaw, M. Rekik, and S. Harayama. 1991. Primary structure of xylene monooxygenase: Similarities to and differences from the alkane hydroxylation system. J. Bacteriol. 173: 1690-1695 https://doi.org/10.1128/jb.173.5.1690-1695.1991
  41. Swannell, R. P. J., D. Mitchell, G. Lethbridge, D. Jones, D. Heath, M. Hagley, M. Jones, S. Petch, R. Croxford, and K. Lee. 1999. A field demonstration of the efficacy of bioremediation to treat oiled shorelines following the Sea Empress incident. Environ. Technol. 20: 863-873 https://doi.org/10.1080/09593332008616881
  42. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The ClustalX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882 https://doi.org/10.1093/nar/25.24.4876
  43. van Beilen, J. B., F. Mourlane, M. A. Seeger, J. Kovac, Z. Li, T. H. Smits, U. Fritsche, and B. Witholt. 2003. Cloning of Baeyer-Villiger monooxygenases from Commamonas, Xanthobacter and Rhodococcus using polymerase chain reaction with highly degenerate primers. Environ. Microbiol. 5: 174-182 https://doi.org/10.1046/j.1462-2920.2003.00401.x
  44. van Beilen, J. B., S. Panke, S. Lucchini, A. G. Franchini, M. Rothlisberger, and B. Witholt. 2001. Analysis of Pseudomonas putida alkane degradation gene clusters and flanking insertion sequences: Evolution and regulation of the alk-genes. Microbiology 147: 1621-1630 https://doi.org/10.1099/00221287-147-6-1621
  45. Van Hamme, J. D., A. Singh, and O. P. Ward. 2003. Recent advances in petroleum microbiology. Microbiol. Mol. Biol. Rev. 67: 503-549 https://doi.org/10.1128/MMBR.67.4.503-549.2003
  46. Venkatrswaran, K., S. Kanai, H. Tanaka, and S. Miyachi. 1993. Vertical distribution and biodegradation activity of oil degrading bacteria in the Pacific Ocean. J. Marine Biotechnol. 1: 33-39
  47. Venosa, A. D., M. T. Suidan, B. A. Wrenn, K. L. Strohmeier, J. R. Haines, B. L. Eberhart, D. King, and E. Holder. 1996. Bioremediation of an experimental oil spill on the shoreline of Delaware Bay. Environ. Sci. Technol. 30: 1764-1775 https://doi.org/10.1021/es950754r
  48. Weaver, R. W., J. S. Angle, and P. S. Bottomley. 1994. Methods of Soil Analysis: Part 2-Microbiological and Biochemical Properties. Soil Science Society of America, Madison, U.S.A
  49. Whyte, L. G., C. W. Greer, and W. E. Innis. 1995. Assessment of the biodegradation potential of psychrotrophic microorganisms. Can. J. Microbiol. 42: 99-106
  50. Xiang, S., T. Yao, L. An, B. Xu, and J. Wang. 2005. 16S rRNA sequences and differences in bacteria isolated from the Muztag Ata glacier at increasing depths. Appl. Environ. Microbiol. 71: 4619-4627 https://doi.org/10.1128/AEM.71.8.4619-4627.2005