Mixotrophic Production of Marine Microalga Phaeodactylum tricornutum on Various Carbon Sources

  • Ceron Garcia M.C. (Departamento de Ingenieria Quimica, Universidad de Almeria) ;
  • Camacho F.Garcia (Departamento de Ingenieria Quimica, Universidad de Almeria) ;
  • Miron A.Sanchez (Departamento de Ingenieria Quimica, Universidad de Almeria) ;
  • Sevilla J.M.Fernandez (Departamento de Ingenieria Quimica, Universidad de Almeria) ;
  • Chisti Y. (Institute of Technology and Engineering, Massey University) ;
  • Grima E.Molina (Departamento de Ingenieria Quimica, Universidad de Almeria)
  • Published : 2006.05.01

Abstract

We investigated the potential use of various carbon sources (fructose, glucose, mannose, lactose, and glycerol) for culturing Phaeodactylum tricornutum UTEX-640 in mixotrophic and heterotrophic batch cultures. Concentrations of carbon substrates tested ranged from 0.005 M to 0.2 M. P. tricornutum did not grow heterotrophically on any of the C-sources used, but successive additions of organic carbon in mixotrophic growth mode substantially increased the biomass concentration and productivity relative to photoautotrophic controls. The maximum biomass productivities in mixotrophic cultures for glycerol, fructose, and glucose were 21.30 mg/l h, 15.80 mg/l h, and 10.20 mg/l h, respectively. These values were respectively 10-, 8-, and 5-fold higher than those obtained in the corresponding photoautotrophic control cultures. Mannose and lactose did not significantly affect microalgal growth. The biomass lipids, eicosapentaenoic acid (EPA) and pigments contents were considerably enhanced with glycerol and fructose in relation to photoautotrophic controls. The EPA content was barely affected by the sugars, but were more than 2-fold higher in glycerol-fed cultures than in photoautotrophic controls.

Keywords

References

  1. Becker, E. W. 1994. Microalgae: Biotechnology and Microbiology. Cambridge University Press, Cambridge, U.K.
  2. Cepeda, E., M. C. Villaran, and N. Aranguiz. 1998. Functional properties of faba bean (Vicia faba) protein flour dried by spray drying and freeze drying. J. Food Engin. 36: 303-310 https://doi.org/10.1016/S0260-8774(98)00061-2
  3. Rebolloso Fuentes, M. M., F. G. Acien Fernandez, J. A. Sanchez Perez, and J. L. Guil Guerrero. 2000. Biomass nutrient profiles of the microalga Porphyridium cruentum. Food Chem. 70: 345-353 https://doi.org/10.1016/S0308-8146(00)00101-1
  4. Guil Guerrero, J. L., R. Navarro Juarez, J. C. Lopez Martinez, P. Campra Madrid, and M. M. Rebolloso-Fuentes. 2004. Functional properties of the biomass of three microalgal species. J. Agric. Food Chem. 65: 511-517
  5. Acien Fernandez, F. G., F. Garcia Camacho, J. A. Sanchez Perez, J. M. Fernández Sevilla, and E. Molina Grima. 2000. Modelling of eicosapentaenoic acid (EPA) production from Phaeodactylum tricornutum cultures in tubular photobioreactors. Effects of dilution rate, tube diameter and solar irradiance. Biotechnol. Bioeng. 68: 173-183 https://doi.org/10.1002/(SICI)1097-0290(20000420)68:2<173::AID-BIT6>3.0.CO;2-C
  6. Ceron García, M. C., J. M. Fernandez Sevilla, F. G. Acien Fernandez, E. Molina Grima, and F. Garcia Camacho. 2000. Mixotrophic growth of Phaeodactylum tricornutum on glycerol: Growth rate and fatty acid profile. J. Appl. Phycol. 12: 239-248 https://doi.org/10.1023/A:1008123000002
  7. Ceron Garcia, M. C., A. Sanchez Miron, J. M. Fernandez Sevilla, E. Molina Grima, and F. Garcia Camacho. 2005. Mixotrophic growth of the microalga Phaeodactylum tricornutum. Influence of different nitrogen and organic carbon sources on productivity and biomass composition. Process Biochem. 40: 297-305 https://doi.org/10.1016/j.procbio.2004.01.016
  8. Rodriguez Ruiz, J., El Hassan Belarbi, J. L. García Sanchez, and D. Lopez Alonso. 1998. Rapid simultaneous lipid extraction and transesterification for fatty acid analyses. Biotechnol. Techniques 12: 689-691 https://doi.org/10.1023/A:1008812904017
  9. Rebolloso, M. M., J. L. Garcia, J. M. Fernandez, F. G. Acien, J. Sanchez, and E. Molina. 1999. Outdoor continuous culture of Porphyridium cruentum in a tubular photobioreactor: Quantities analysis of the daily cyclic variation of culture parameters. J. Biotechnol. 70: 271-288 https://doi.org/10.1016/S0168-1656(99)00080-2
  10. Sukenik, A., O. Zmora, and Y. Carnneli. 1990. Lipid synthesis and fatty acid composition in Nannochloropsis sp. (Eustigmatophyceae) grown in a light-dark cycle. J. Phycol. 26: 463-469 https://doi.org/10.1111/j.0022-3646.1990.00463.x
  11. Molina Grima, E., J. A. Sanchez Perez, F. Garcia Camacho, J. L. Garcia Sanchez, and J. M. Fernandez Sevilla. 1995. Variation of fatty acid profile with solar cycle in outdoor chemostat culture of Isochrysis galbana ALII-4. J. Appl. Phycol. 7: 129-134 https://doi.org/10.1007/BF00693058
  12. Sanchez Miron, A., A. Contreras Gomez, F. García Camacho, E. Molina Grima, and Y. Chisti. 1999. Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. J. Biotechnol. 70: 249-270 https://doi.org/10.1016/S0168-1656(99)00079-6
  13. Sanchez Miron, A., M. C. Ceron García, A. Contreras Gomez, F. Garcia Camacho, E. Molina Grima, and Y. Chisti. 2003. Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochem. Eng. J. 16: 287-297 https://doi.org/10.1016/S1369-703X(03)00072-X
  14. Qiang, H., H. Zhengyu, Z. Cohen, and A. Richmond. 1997. Enhancement of eicosapentaenoic acid and linolenic acid production by manipulating algal density of outdoor cultures of Monodus subterraneus and Spirulina platensis. Eur. J. Phycol. 32: 81-86 https://doi.org/10.1080/09541449710001719395
  15. Blanchemain, A. and D. Grizeau. 1999. Increased production of eicosapentaenoic acid by Skeletonema costatum cells after decantation at low temperature. Biotechnol. Techniques 13: 497-501 https://doi.org/10.1023/A:1008989730798
  16. Wen, Z. Y. and F. Chen. 2000. Production potential of eicosapentaenoic acid by the diatom Nitschia. Biotechnol. Lett. 22: 727-733 https://doi.org/10.1023/A:1005666219163
  17. Zaslavskaia, L. A., J. C. Lippmeier, C. Shih, D. Ehrhardt, A. R. Grossman, and K. E. Apt. 2001. Trophic conversion of an obligate photoautotrophic organism through metabolic engineering. Science 292: 2073-2075 https://doi.org/10.1126/science.160015
  18. De Swaaf, M. E., L. Sijtsma, and J. T. Pronk. 2003. Highcell- density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnol. Bioeng. 81: 666-672 https://doi.org/10.1002/bit.10513
  19. Fernandez Sevilla, J. M., M. C. Ceron Garcia, A. Sanchez Miron, E. H. Belarbi, F. Garcia Camacho, and E. Molina Grima. 2004. Pilot plant-scale outdoor mixotrophic cultures of Phaeodactylum tricornutum using glycerol in vertical bubble column and airlift photobioreactors: Studies in fedbatch mode. Biotechnol. Prog. 20: 728-736
  20. Chu, W. L., S. M. Phang, and S. H. Goh. 1996. Environmental effects on growth and biochemical composition of Nitzschia inconspicua grunow. J. Appl. Phycol. 8: 389-396 https://doi.org/10.1007/BF02178582
  21. Day, J. G., J. G. Edwards, and G. A. Rogers. 1991. Development of an industrial-scale process for the heterotrophic production of a micro-algal mollusc feed. Bioresource Technol. 38: 245-249 https://doi.org/10.1016/0960-8524(91)90163-E
  22. Read, H., S. Reads, and B. Park. 1989. The estimation of algal yield parameters associated with mixotrophic and photoheterotrophic growth under batch cultivation. Biomass 18: 153-160 https://doi.org/10.1016/0144-4565(89)90090-5
  23. Burrell, R., C. Mayfield, and W. Inniss. 1984. Biomass production from the green algae Chlorella vulgaris and Ankistrodesmus braunii cultured heterotrophically. Biotechnol. Lett. 6: 507-510 https://doi.org/10.1007/BF00139993
  24. Cid, A., J. Abalde, and H. Concepcion. 1992. High yield mixotrophic cultures of the marine microalga Tetraselmis suecica Butcher. J. Appl. Phycol. 4: 31-37 https://doi.org/10.1007/BF00003958
  25. Garcia Sanchez, J. L., E. Molina Grima, F. Garcia Camacho, J. A. Sanchez Perez, and D. Lopez Alonso. 1995. Estudio de macronutrientes para la produccion de PUFAs a partir de la microalga marina Isochrysis galbana. Grasas Aceites (Sevilla) 45: 323-332
  26. Whyte, J. N. 1987. Biochemical composition and energy content of six species of phytoplankton used in mariculture of bivalves. Aquaculture 60: 231-241 https://doi.org/10.1016/0044-8486(87)90290-0
  27. Hansmann, E. 1973. Pigment analysis, pp. 359-368. In Stein, J. R. (ed.), Handbook of Phycological Methods, Culture Methods and Growth Measurements. Cambridge University Press, London
  28. Parsons, T. R. and J. D. H. Strickland. 1965. pp. 359-368. In Stein, J. R. (ed.). Handbook of Phycological Methods, Culture Methods and Growth Measurements. Cambridge University Press, London
  29. Hayward, J. 1968. Studies on the growth of Phaeodactylum tricornutum II. The effect of organic substances on growth. Physiol. Plantarum 21: 100-108 https://doi.org/10.1111/j.1399-3054.1968.tb07234.x
  30. Ukeles, R. and W. E. Rose. 1976. Observations on organic carbon utilization by photosynthetic marine microalgae. Mar. Biol. 37: 11-18 https://doi.org/10.1007/BF00386774
  31. Wood, B. J. B. 1998. Lipids of algae and protozoa, pp. 807- 868. In Ratledge, C. and Wilkinson, S. G. (eds.), Microbial Lipids, 1. Academic Press, London
  32. Ellis, R., T. Spooner, and R. Yakulis. 1975. Regulation of chlorophyll synthesis in the green alga Goelkiana. Plant. Physiol. 55: 791-795 https://doi.org/10.1104/pp.55.4.791
  33. Ogawa, T. and S. Aiba. 1981. Bioenergetic analysis of mixotrophic growth in Chlorella vulgaris and Scenedesmus acutus. Biotechnol. Bioeng. 23: 1121-1132 https://doi.org/10.1002/bit.260230519
  34. Marquez Sasaki, K., T. Kakizono, N. Nishio, and S. Nagai. 1995. Enhanced biomass and pigment production during growth of Spirulina platensis in mixotrophic culture. J. Chem. Technol. Biotechnol. 62: 159-164 https://doi.org/10.1002/jctb.280620208
  35. Shi, X. M. and F. Chen. 1999. Production and rapid extraction of lutein and the other lipid-soluble pigments from Chlorella protochecoides grown under heterotrophic and mixotrophic conditions. Nahrung-Food 43: 109-113 https://doi.org/10.1002/(SICI)1521-3803(19990301)43:2<109::AID-FOOD109>3.0.CO;2-K