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INEQUALITIES FOR DUAL
HARMONIC QUERMASSINTEGRALS

YUAN JUN, YUAN SHUFENG, AND LENG (GANGSONG

ABSTRACT. In this paper, we study the properties of the dual
harmonic quermassintegrals systematically and establish some in-
equalities for the dual harmonic quermassintegrals, such as the
Minkowski inequality, the Brunn-Minkowski inequality, the Blas-
chke-Santalé inequality and the Bieberbach inequality.

1. Introduction

The setting for this paper is n-dimensional Euclidean space R™. Let
K™ denote the set of convex bodies (compact, convex subsets with non-
empty interiors) and K7 denote the subset of ™ that contains the origin
in their interiors in R™. Denote by vol;(K|€) the i-dimensional volume of
the orthogonal projection of K onto an i-dimensional subspace £ C R"™.
The important geometric invariants related to the projection of convex
body K are the quermassintegrals defined by

vol; (K |€)

(11)  Wai(K) =k
Gng) ki

where the Grassmann manifold G(n, ) is endowed with the normalized
Haar measure, and k, is the volume of the unit ball B, in R™. The
quermassintegrals are generalizations of the surface area and the volume.
Indeed, nW;(K) is the surface area of K, and Wy(K) is the volume of
K.

The quermassintegrals arise in many areas of Mathematics and have
different definitions. If K has a C? boundary, they are the integrals
of elementary symmetric functions of the principal curvatures over the

Received March 2, 2005.

2000 Mathematics Subject Classification: 52A40, 52A20.

Key words and phrases: convex body, star body, dual harmonic quermassintegrals,
the Brunn-Minkowski inequality, the Blaschke-Santalé inequality.

Supported in part by the National Natural Science Foundation of China. (Grant
NO0.10271071).



594 Yuan Jun, Yuan Shufeng, and Leng Gangsong

boundary. In the theory of mixed volumes, the quermassintegrals are
called simple mixed volumes. They are also called projection measure,
intrinsic volumes, etc. The reader should consult [16] and [18] for details.

The dual quermassintegrals of a star body L, Wi(L), were introduced
by Lutwak [11], which are defined by letting Wo(L) = V (L), Wn(L) = ky,
and for 0 <7 < n by

vol;(L N &)

G(ny) k;

dpi(),
where vol;(L N &) denotes the i-dimensional volume of slice of L by an
i-dimensional subspace £ C R™.

While the quermassintegrals are connected with the projections of
convex bodies, the dual quermassintegrals are closely related to the cross
sections of star bodies. It is shown in [6] that they are the only rotation
invariant continuous star valuations with the corresponding homogene-
ity. Recently, Zhang [19] proved that the dual quermassintegrals share
the same kind of kinematic formulas as the quermassintegrals.

Also associated with a convex body K are its harmonic quermass-
integrals. These quermassintegrals were introduced by Hadwiger [5,
sect.6.4.8], and can be defined by letting Wo(K) = V(K), Wy (K) = kn,
and for 0 < ¢ < n, by

(13)  Wasi(K) = kn < /. » [V—lfgw} B dm(&))

In [12], Lutwak found an inequality for the harmonic quermassinte-
grals whose form is similar to the classical inequality of quermassinte-
grals, and established an interesting connection between the harmonic
quermassintegrals of a convex body and the power-means of the width
function of the body.

Following Hadwiger, we introduce the dual harmonic quermassin-
tegrals of a star body L, Wn_i(L), which can be defined by letting
Wo(L) = V(L), Wy(L) = ky, and for 0 < i < n by

4 -1
(14)  Waei(L) = kn ( / " [l—f@} dm(&)) .

From the Schwarz or Holder inequality, it follows that
(1.5) Wi(L) < Wi(L), 0<i<n,

with equality if and only if L is of constant (n — i)-section.

-1
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The aim of this paper is to study the properties of the dual harmonic
quermassintegrals systematically. For reader’s convenience, we try to
make the paper self-contained. This paper, except for the introduction,
is divided into four sections. In Section 2 we will recall some basics
about convex bodies, star bodies and mixed volumes.

In Section 3, we introduce the concept of the mixed p-dual harmonic
quermassintegrals and establish the Minkowski inequality for the mixed
p-dual harmonic quermassintegrals (Theorem 3.2). As an application,
the Brunn-Minkowski inequalities for the dual harmonic quermassinte-
grals are obtained.

A classical affine isoperimetric inequalities is the Blaschke-Santalé
inequality which was proved by Blaschke [1] for n < 3 and by Santalé [15]
for all n. In Section 4, we give the Blaschke-Santalé type inequalities
for the dual harmonic quermassintegrals.

Let ¢} denote the set of star bodies in R™ containing the origin in
their interiors. In Section 5, following Lutwak’s i-th half-width of a
convex body [12], we introduce the concept of i-th half-chord length of
a star body L, P;(L), and show that for L € ¢7,

(1.6) Wi(L) > knPin(L)™™%, (0<i<n—1)

with equality if and only if L is a ball. For ¢ = n — 1, the both sides of
inequality (1.6) are equal for all L € 7.

2. Notations and preliminary works

As usual, S ! denotes the unit sphere, o the origin in Euclidean
n-space R"™.

Let K be a nonempty compact convex body in R”, the support func-
tion hg of K is defined by

(2.1) hi(u) =max{u-z:z€ K}, ues" 1,

where u - x denotes the usual inner product of v and z in R”.
If K is a convex body that contains the origin in its interior, the polar
body K* of K, with respect to the origin, is define by

(2.2) K'={zeR"'z-y<1lye€ K}.

For K; € K™, and \; > 0,1 < i < r, the Minkowski linear combination
MKr+ -+ A Kr € K" is defined by

(2.3) MK+ -+ MK = {)\1501+---—|—)\T.r, 1z € Ki}.
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Of fundamental importance is the fact that the volume of a linear com-
bination of figures defined by (2.3), can be expressed by a symmetric
homogenous n-th degree polynomial in the A;, i.e.,

(2.4) VLK 4+ MK =) Vi diy - iy,

where the sum is taken over all n—tuples of positive integers (i1, ..., %)
with entries not exceeding r. The coefficient V;;...;, depends only on the
figures K;,, ..., K;,, and is uniquely determined by (2.4). It is called the
mixed volume of K , ..., K;,, and written as V(K;,, ..., K;,) [4, p.353].
V(K1,41;-..; Km,im) will be used when the convex body K appears i;
times. _

The following elementary properties of mixed volumes will be used
later. For K,L,K; € K*(1 <i<n),and K D L, then
(2.5)
V(Kl, ey K1, Kn-I-L) = V(Kl, voy K1, Kn)+V(K1, e K, L),

(26) V(Kl,...,Kn_l,K)ZV(Kl,...,Kn_l,L)-

For a compact subset L of R™, which is star-shaped with respect to
the origin, we shall use p(L,-) to denote its radial function; i.e., for
ue S

(2.7) p(L,u) = max{\ >0: ) u € L}.

If p(L,-) is continuous and positive, L will be called a star body. Two
star bodies K and L are said to be dilates if px (u)/pr(u) is independent
of u € §71,

If z; € R* , 1 < i < m, then 1+ - ¥z, is defined to be the usual
vector sum of the points x;, if all of them are contained in a line though
0, and 0 otherwise.

Let L; € ¢7, and t; > 0,1 < i < m, then

tlLl-T— ce J—tmLm = {tl.’El-T— oo -‘I'-tm:L‘m ix; € Li},

is called a radial linear combination. 3
Let L € 7, the chordal symmetral of L will be denoted by AL, i.e.,

(2.8) AL = %(L—T—(—L)).

It is easy to verify that
(2.9) 20(AL, u) = p(L,u) + p(L, —u).
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From the dual Brunn-Minkowski inequality [13], it follows that for
L € ¢y,

(2.10) V(AL) < V(L),

with equality if and only if L is centered.

Also associated with a star body L € ¢7 is its star dual L°, which
was introduced by Maria [14]. Let i be the inversion of the one-point
compactification R™ of R", with respect to S™!:

i(z) = ﬁ for z € R™\{0}.
x

Then the star dual L° of a star body L € ¢} is defined by
L? = cl(R™\i(L)).

Generally, star dual of a convex body is different from its polar dual. It
is easy to verify that for every u € $"1 [14],

1
2.11 p(L°u) = ———.
@1) )= W
We will simply write A°L rather than (AL)°.
For K, L € K™, the Minkowski inequality for mixed volumes [4, p.369]
is
(2.12) V(K,n—1;L)">V(K)"'V(L),

with equality if and only if K and L are homothetic.
If L is a star body such that for some ¢ with 1 <37 <n-—1, vol;(LNE)
has the same value for each ¢ € G(n,¢). We say L is of constant i-section.
The above elementary results (and definitions) are from the theory
of convex bodies. The reader may consult the standard works on the
subject [3, 4, 7, 16, 18] for reference.

3. The Brunn-Minkowski inequalities for dual harmonic qu-
ermassintegrals

In this section, we will prove two Brunn-Minkowski inequalities for
the dual harmonic quermassintegrals. At first, let us list some elemen-
tary properties of the dual harmonic quermassintegrals.

LEMMA 3.1. Let L, L' € ¢.
(i) (Positive homogeneity of degree n — i) If ¢ > 0, then

Wi(cL) = Wy (L).
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(ii) (Invariance against motions) If ¢ € SL(n), then
Wi(oL) = Wi(L).

(iii) (Continuity) W;(L) is a continuous function of L, i.e. if {Ln} is a
sequence in ¢ such that L,, converges to L, then

lim W;(Ly,) = Wi(L).

m-—00

(iv) (Monotonicity) If L C L', then

v

Wi(L) < Wi(L).

Let K,L € K3, £ € G(n,i) and 0 < p < i. Let V,;(K, L;§) denote
V(IKNEi—p;LNEp). Then we define the mixed p-dual harmonic
quermassintegrals, Wy, ,_;(K, L) by

. )11 -1
31)  Wpni(K,L) = kn ( /G " [Vp(#ﬂ] dui(g))

If p = 1, we shall write W;(K, L), rather than Wy ;(K, L). It follows that
Wpi(K, K) = Wi(K), for all 0 < p < n — i and W,_; (K, L) = Wi(L),
for all K.

For the mixed p-dual harmonic quermassintegrals, we have the fol-
lowing Minkowski inequality.

THEOREM 3.2. Let K,L € K} and0<i<n. If0<p<n—i, then
(3.2) Wi (K, L) > W;(K)" P Wy(L)?,
with equality if and only if K and L are dilates.

Proof. By the Minkowski inequality for mixed volumes (2.12) and
the definition of V,,;(K, L; ), we get

P

3.3) ni-p
( > vol,— (K N&) 7 vol, ;(LN&E)R—T.
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According to (3.3) and the Hoélder inequality, we have

¥ n—1 7L’ - B
WK, L) = ky ( R dm(f))
G(n,n—1) n—1i

voly_i(K N 5)] = {voln_i(L n g)} ==
> kn ( /G - [_kn_i —h |

w n—i— E ~ E

> Wi(K) 5 Wi(L)=s.

O

As an application of Theorem 3.2, we have the following Brunn-
Minkowski inequality for the dual harmonic quermassintegrals.

THEOREM 3.3. Let K,L € K} and 0 <1 < n. Then
(3.4) Wi(K + L)7= > Wi(K)= + Wi(L)7,
with equality if and only if K and L are dilates.
Proof. Let £ € G(n,i). Since K, L € K7, it is easy to prove that
(3.5) (K+L)NED (KNE) + (LNE).
By (2.5), (2.6) and (3.5), for M € K7, we have
Vi(M,K +L;&) =V(MN&i—1;(K+L)NE)
2V(MNEi—1;(KnE)+(LNE))
=VMNEi—1; KN +V(MNEi—1;LNE)
= V1,i(M, K; &) + V1,i(M, L; §).
According to (3.1), (3.2) and the Minkowski inequality, we have
Wi(M,K + L)

= ( R dun_i(£)>_l

< G(n,n—1)

Wi(M, K) + Wi(M, E)
W 1 v

V(M) (W;(K)n WD),

| V

-1
L|nzM1(Z+D]n1ML{
‘)C'n,—’l, ( ) ( )>

v

v
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with equality if and only if K and L are dilates of M. Now if take
K + L for M, and recall that W;(K, K) = W;(K), then Theorem 3.3
follows. |

Let K and L be star bodies in R™, p > 1, the p-radial addition K+,L
be a star body whose radial function is given by

(3.6) p(E+pL,u)’ = p(K,u)’ + p(L, u)P.

We will establish the Brunn-Minkowski inequality for the p-radial
addition and dual harmonic quermassintegrals.

THEOREM 3.4. Let K,L € 97, 0<i<mn andp>n—1i. Then
(3.7) Wi(KFpL)7= > Wi(K)75 + Wy(L)7,
with equality if and only if L is a dilatate of K.

To prove the Theorem 3.4, we first introduce the following lemma:

LEMMA 3.5. Let K,L € ¢ and0 < i <n. If§ € G(n,i) and p > 1,
then

(3.8) voLi[(KFpL) NE]F > voly(K N €)% + vol;(L N €)E,
with equality if and only if K and L are dilates.
Proof. By the polar coordinate formula for volume and (3.6), we have

b4

i

_ 1 .
voly[(K+,L) N ¢]¥ = B /s - P[(K;,,L)ng](u)du}
= |5 [ P
[1 Ak
= |7 o )+ Al

| ¢

- 4
1 . i .

> |7 o et 3 [ Al
L2 Jsn—ting t Jsn-1ng

= vol;(K N&)% +vol;(LN&)F.

4

1
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Proof of Theorem 8.4. By (1.4), Lemma 3.5 and Minkowski integral
inequality, we have

_P_

kW (K—T—,,L)) n=t

kn
__P_
n—1

= / .[voln_i[(K—T-pL)ﬂf]]_ld/in—i(f))
G(n,n—1t)

v

n—1t _774}1_1'
/ [voln_i(K N€)75 + voln_i(L N g)ﬁ?] P (5))
G(n,n—1)

—i5

( / vol,—i(K N §)‘1dun_¢(£))
G(n,n—1i)

+ vol, (LN &) Ydpn_;

(/G(n’n_i) o) ( §)" dp (5))

y B y 2
B (kn_iwi(K)> ni (kn_iWi(L)> ni
= T + _—kn— ’

which is just the inequality (3.7). O

v

P

n—1i

4. The Blaschke-Santalé type inequalities

In this section, we shall give the Blaschke-Santald type inequalities
for the dual harmonic quermassintegrals.

To prove the main theorem of this section, we first introduce the
following lemma:

LEMMA 4.1. [12] Let K be a convex body containing the origin in
its interior and £ € G(n,i). Then

(4.1) K*n&=(K[§)"

THEOREM 4.2. Let K be a centered convex body inR™ and 0 < ¢ < n.
Then

(4.2) Wi(K*)Wi(K) < k2,
with equality if and only if K is an ellipsoid.
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Proof. Let s = n— i, and £ € G(n,s). By the Blaschke-Santalé
inequality, for the body K¢ in &, we have

vols[(K|€)*]vols (K |€) < K.
According to the Lemma 4.1, we obtain
vol(K1€) _ [vols(K* ng)]‘l
ks ks ’
‘with equality if and only if K| is an ellipsoid in £&. We integrate both
sides of inequality (4.3) over G(n, s) and get

vols(K1¢) [VOIS(K* 05)]_1
- 4 d S —_— -, d S ]
/G R GE /G I s €)

that is,

(4.3)

WilK) _ (Wi(K*)>‘l.
kn kn
This is the desired inequality
Wi(K*)Wi(K) <K,
with equality if and only if K is an ellipsoid. [
By (1.5) and noticing that W;(K) < W;(K) [8], we have

COROLLARY 4.3. Let K be a centered convex body in R™ and 0 <
1 < n. Then

(4.4) Wi(K")Wi(K) < k3,
equality holds when i # 0 if and only if K is an ball.
The case ¢ = 0 of (4.4) is the well-known Blaschke-Santalé inequality.

5. The Bieberbach inequality for dual harmonic quermass-
integrals

For K € K" and u € S™1, let b(K,u) denote the width of K in
the direction u. For a real number ¢ # 0, Lutwak [12] defined the i-th
half-width of a convex body K, B;(K), by

1 .
_— 91t
[ bEwas
For i = —o00, 0, 0o, define B;(K) by
Bi(K) = lim By(K).

8§—7

BA(K) { 1/
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It thus follows that B_oo(K) is half the minimum width of K, while
Buo(K) is half the diameter of K, and B;(K) is half the mean width of
K.

Consider the general Bieberbach inequality:

V(K) S knBi(K)nv (K € ’Cn)

with equality if and only if K is a ball.

Bieberbach [2] established this general inequality, whose special form,
when ¢ = 00, is the famous Bieberbach inequality. This was later im-
proved by Urysohn [17] when he proved the Urysohn inequality thereby
establishing the general Bieberbach inequality for ¢ = 1. In [10], Lutwak
obtain a further improvement by proving the harmonic Urysohn inequal-
ity which established the general Bieberbach inequality for 7 = —1. And
in [9], he showed that the Bieberbach inequality holds for ¢ if and only
if —n < ¢ < o0, that is for K € K™, then

(5.1) V(K) < ko Bi(K)", (—n < i < 00)

with equality if and only if K is a ball.
In [12], Lutwak established an extension of (5.1), which states that
for K € K™, one has the inequality:

(5.2) Wi(K) < knBi_n(K)"™%, (0<i<n-—1)

with equality if and only if K is an ellipsoid. For i = n — 1, both sides
of inequality (5.2) are equal for all K € K.

Following Lutwak’s -th half-width of a convex body, in this section,
we introduce the concept of i-th half-chord length of a star body.

Suppose L € ¢?. For u € S™, let p(L,u) = p(L,u) + p(L, —u)
denote the length of the chord of L in the direction w which through
origin. For ¢ # 0, we define the i-th half-chord length of L, P,(L), by

1 . 1/i

(5.3 R = | (L, w)/2'dS ()

For i = —o0, 0, 0o, define P;(L) by
Pi(L) = lim Ps(L).
S—rt

nkn Sgn—1

It thus follows that P_.o(L), Ps (L) is the maximum and minimum
chord length of L which through origin, respectively.
For a fixed ¢, the i-th half-chord length is a map

P : b — R

We list some of its elementary properties .



604 Yuan Jun, Yuan Shufeng, and Leng Gangsong

(i) (Positively homogeneous) If ¢ > 0, then
Py(cL) = cP;(L).
(i) (Subadditive) If L, L’ € ¢?, then
P(LFL') < P(L) + P(L).

(iii) (Continuity) P;(L) is a continuous function of L.
(iv) (Monotonicity for bodies) If L € L', then

P(L) < B(L).
(v) (Monotonicity for power) If ¢ < j, then
P(L) < Bi(L).

Let L € ¢ and € € G(n,1). Then vol;(LNE) is just the chord length
of L along &. We can, for ¢ # 0, rewrite P;(L) as:

(5.4) P(L) = [ /. o [Y‘)—h(—f”—@]idm@] "

Applying the concept of i-th half-chord length, we give a dual in-
equality of (5.2).

THEOREM 5.1. Let L € ¢};. Then
(5.5) Wi(L) > knPin(L)"™, (0<i<n—1)
with equality if and only if L is a ball. For i = n — 1, the both sides of
inequality (5.5) are equal for all L € ¢
To prove the inequality (5.5), we shall use the following two lemmas.
LEMMA 5.2. (Dual Blaschke-Santalé Inequality) Let L € ¢7. Then
(5.6) VL)L) = K,
with equality if and only if L is a ball.

Proof. By the polar coordinate formulate for volume and (2.11), we

have ] )
V(L) = / pur(u'du = [ pufu)du.
gn—1 n Sn—1

n
Then by the Cauchy-Schwartz inequality, we get

vawe) = (3 [ owran) (3] puwnin)
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By the equality conditions of Cauchy-Schwartz inequality, the equal-
ity of (5.6) holds if and only if L is a ball.

LEMMA 5.3. (Dual Bieberbach Inequality) Let L € 7. Then

(5.7)

V(L) 2 knP-a(L)",

with equality if and only if L is a ball.
Proof. By (2.9) and (5.3), we have

P—-n(L) =

It thus follows that

[ baasw)] T
[ L ALu)"dS(w)|
[ pBLw s )]
- 1 - _%
_E;V(A L)]

n __ kn
Pon(L)" = V(AeL)’

So (5.7) holds if and only if

(5.8)

V(L)V(A°L) > k2.

By (2.10) and Lemma 5.2, we have
V(L)V(A°L) > V(AL)V(A°L) > k2.

Hence (5.8) holds, then the lemma follows.
By the equality conditions of (2.10) and Lemma 5.2, the equality of
(5.7) holds if and only if L is a ball.

O

a

Proof of Theorem 5.1. If £ is an i-dimensional subspace R™, then
for j < i, let G(&,7) denote the Grassmann manifold of j-dimensional
subspaces of R™ which are contained in £. For the Haar measure on
G(&,7) we shall write p;(&; ), and we assume that it is normalized so

that 1;(& G(€,5)) = 1.

Let s =n—1. If £ € G(n, s), then for ( € G(&, 1), one has (LNE)N¢ =
LN ¢. Hence, from (5.4) we see that inequality (5.7), for the body LN¢&

in £, can be written as

(5.9)

/Gm) [w] EEEE {&(km_g)] -
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By Lemma 5.3, we know the equality holds if and only if LN ¢ is a ball
in £&. We integrate both sides of the inequality (5.9) over G(n, s) and get

/ / [EEK_LQQ]—Sdm(s;C)dus(S)
G(n,s) JG(£,1) 2

vdALnfq'l
= /G(n,s) l: ks s (g),

with equality if and only if L is a ball.
The quantity on the left of the last inequality is equal to (see [16,

(12.53)])
voli (LN )]~ - .
/G " [———2 } dua(€) = Po(D)",

while the quantity on the right is just [Wy_s(L)/ks]™!. Thus, our last
inequality is the desired inequality

Wns(L) > knP_s(L),
with equality if and only if L is a ball. O
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