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ON SOME INTEGRAL INEQUALITIES
WITH ITERATED INTEGRALS

YEeoL JE CHO, SEVER S. DRAGOMIR, AND YOUNG-HO KM

ABSTRACT. The main aim of the present paper is to establish some
new Gronwall type inequalities involving iterated integrals and give
some applications of the main results.

1. Introduction

The integral inequalities involving functions of one and more than
one independent variables which provide explicit bounds on unknown
functions play a fundamental role in the development of the theory of
differential equations.

The Gronwall type integral inequalities provide a necessary tool for
the study of the theory of differential equations, integral equations and
inequalities of various types (see Gronwall [9] and Guiliano {10]). Some
applications of this result to the study of stability of the solution of lin-
ear and nonlinear differential equations may be found in Bellman [3].
Some applications to the existence and uniqueness theory of differential
equations may be found in Nemyckii-Stepanov [14], Bihari [4], and Lan-
genhop [11]. During the past few years several authors (see references
below and some of the references cited therein) have established several
Gronwall type integral inequalities in two or more independent real vari-
ables. Of course, such results have application in the theory of partial
differential equations and Volterra integral equations.

In [5] (see also [1, p.98]), Bykov and Salpagarov proved the following
interesting integral inequality:
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LEMMA 1.1. Let u(t), b(t), k(t,s) and h(t, s,o) be nonnegative con-
tinuous functions for a < 7 < s <t < 8. Suppose that

u(t) <a+ /at b(s)u(s)ds + /at /: k(s,m)u(r)drds

t s T
+///h(s,7‘,o)u(a)dad7'ds

for any t € [a, 8], where a > 0 is a constant. Then, for any t € [, 3],

u(t) < aexp (/at b(s)ds + /at /: k(s,7)drds
+LthLTh(s,T,a)dades>.

In this paper, we consider simple inequalities involving iterated in-
tegrals in the inequality (1.1) for functions when the function u in the
right-hand side of the inequality (1.1) is replaced by the function ulogu
and the constant a is replaced by a nonnegative, nondecreasing func-
tion a(t). We also provide some integral inequalities involving iterated
integrals and some applications for the main results.

(1.1)

2. Some inequalities for Bykov type

Throughout the paper, all the functions which appear in the inequal-
ities are assumed to be real-valued.

First, we state and prove some new interesting integral inequalities
involving iterated integrals.

THEOREM 2.1. Let u(t), b(t), k(t,s) and h(t,s,7) be nonnegative
continuous functions for a < 7 < s <t < 3. Suppose that

t

u(t) < a +/a b(s)u(s)logu(s)ds
(2.1) + /: /: k(s,T)u(r)logu(r)drds
+ /at /: /(: h(s,T,0)u(c)logu(c)do drds
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for any t € [, 8], where a > 1 is a constant. Then, for any t € [a, 3],

(2.2) u(t) < a®PA®),

At) = /a “b(s)ds + /a t /a k(s ) drds

t ps pT
(2.3) +///h(s,7’,a)d0d7'ds.

Proof. We denote the right-hand side of (2.1) by v(¢). Then v(a) = a,
the function v(t) is nondecreasing in t € [a, (], u(t) < v(t) and

where

v'(t) = b(t)u(t) log u(t) +/ k(t, 7)u(r)log u(t) dr
+ / /T h(t,7,0)u(c)logu(o) do dr

= b(t)v(t) logv(t) + /t k(t,m)v(T)logv(r)dr

+/ /T h(t,r,0)v(o)logv(o)do dr
< B(t)v(t)

where .
B(t) = b(t) logv(t) +/ k(t,7)logv(r)dr
+ / /T h(t,r,0)logv(o) do dj'.
That is,
(2.4) 1;((;)) < B(b).

By taking t = s in (2.4) and then integrating it from « to any t € [«, 3],
we have

(2.5) logv(t) <loga + /t B(s)ds.

«
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Now, by a suitable application of Lemma 1.1 to (2.5), we get

t
(2.6) logv(t) < (loga)exp (/ B(s) ds) = log a®*P(A®),

[0

where A(t) is defined by (2.3). From (2.6), we observe that
(2.7) v(t) < a®*PA®),

Now, by using (2.7) in u(t) < v(t), we get the required inequality in
(2.2). This completes the proof. O

REMARK 2.1. If, in (2.1) and (2.2), the constant a is replaced by a
nonnegative, nondecreasing function a(t) > 1, then the inequality (2.1)
implies that, for all a <t < T < (3,

u(t) < a(T) +/ b(s)u(s)logu(s)ds +/ /s k(s,)u(r)logu(r)drds

t 8 T
+/ / / h(s,7,0)u(o)logu(o) do drds.

Therefore, Theorem 2.1 implies u(t) < (a(T))**®A®) and, for T = t, we
obtain u(t) < (a(t))=*PA®),

LEMMA 2.2. Let u(t), a(t), b(t), k(t,s) and h(t,s,T) be nonnegative
continuous functions for o <7 < s <t < (3. Suppose that

u(t) < alt) + /at b(s)u(s)ds + /at /: k(s,7)u(r)drds

t 8 T
+ / / / h(s,r,0)u(c) do drds
2 22 o

for any t € [, 8]. Then, for any t € [, (],

(2.9) u(t) < aft) + /a * () exp ( / " B) da) ds,

where

(2.10) f(t) = a(t)b(t) +/ k(t,7)a(7)dr +/ /T h(t,r,0)a(o) dodr,

(2.8)

(2.11) B(t) = b(t) + /a tk(t,T) dr + /a t /a " hit, 7, 0) dodr
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Proof. We denote the right-hand side of (2.8) by a(t) + v(t). Then
v(a) = 0, the function v(t) is nondecreasing in t € [, 8], u(t) < a(t) +
v(t) and

o () = bt)u(t) + / k(t, TYu(r) dr
(2.12) / / (t,7,0)u(c)do dr
< f(t) + B(t)o(t),

where f(t) and B(t) are defined by (2.10) and (2.11), respectively. The
condition (2.12) implies that

(6) - Bloptelesp( [ B6)a5) < fe)ewp( | B(6) )

fora <sor

Ed;[v(s) exp( / "B(s) d&)} < f(s)exp( / "B(s) d5).

Integrating over s from « to any t € [, 8], we have

(2.13) v(t) < /: f(s)exp (/st B($) dé) ds.

Now, by using (2.13) in u(t) < a(t) +v(t), we get the required inequality
in (2.9). This completes the proof. O

THEOREM 2.3. Let u(t), b(t), k(t, s) and o(t) be nonnegative contin-
uous functions for a < s < t < . Suppose o(t) > 1 and

u(t) < a(t){a-f— / b(s)u(s) log u(s) ds

+/: /: k(s, 7)u(t)logu(s) des}

for any t € [a, 3], where a > 1 is a constant. Then

(214)  u(t) < o(t) exp(B1 / fi(s exp( / £2(6) d6> ds)
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for any t € |a, (], where

Bi(t) = a+ / b(s)o(s) log o(s) ds

(2.15) E s
+/a/ak(s,T)a(T)loga(T)deS,

(216)  fult) = b(t)o(t) Bu(t) + / k(t, 7)o () By (1) dr,

(2.17) f2t) = b(t)o(t) + / k(t, 7)o (r) dr.

Proof. We deduce from the hypothesis on u(t) that u(t) < a(t)v(t),
where the function v(t) is defined by

v(t) =a+ /at b(s)u(s)logu(s)ds + /at /: k(s, 7)u(r)logu(s)drds.

The function v(t) is nondecreasing in t € [, 8], v(a) = a and

v'(t) = b(t)u(t) log u(t) / k(t, 7)u(r) logu(r) dr

< (b(t)d(t) log(a(t)v(t)) + / k(t,m)a(r) log(ff(f)v(f))dT)v(t)-
This implies that

2’((:)) < b(s)a(s) log(a (s)u(s)) + / k(s 7)o (7) log(a (T)v()) dr.

Integrating over s from o to any ¢ € [«, ], we have

log v(t) < Bi(t) / b(s)o(s)logu(s)ds

/ / (s,7)o(7)logv(T)dr ds,

where By (t) is defined by (2.15). Applying Lemma 2.2 in (2.17), we have

(2.19) v(t) < exp <B1 / f1(s) exp < / £2(8) d5) ds)

where f1(t), f2(t) are defined in (2.16) and (2.17), respectively. Now, by
using (2.19) in u(t) < o(t)v(t), we get the required inequality in (2.14).
This completes the proof. 0

(2.18)

In the same manner, we can prove the following theorem:
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THEOREM 2.4. Let u(t) be nonnegative, continuous functions for a <
t < 3. Suppose that

u(t) < a—l—/ k(t, s)u(s)logu(s)ds
(2.20) o

+ /at /: h(t,s,o)u(o)logu(c) dods,

where a > 1 is a constant and k(t,s) and h(t,s,o) are nonnegative,
continuous functions for « < 0 < s < t < 3. Suppose the partial
derivatives 2& (L, s), %’f(t, s,0) exist and are nonnegative, continuous for
agagsgtgﬂ Then, for any t € |o, 8],

(2.21) u(t) < a®PB2(0)

where

Bg(t):/tk(s s ds+/ / lks(s, ) + h(s, 5,0)] dods

///hsa'rdrdads

REMARK 2.2. If, in (2.20) and (2.21), the constant a is replaced by a
nonnegative, nondecreasing function a(t) > 1, then the inequality (2.20)
implies that, for alla <t < T < 3,

t

u(t) < a(T) +/ k(t, s)u(s)logu(s) ds

«

+ /at /: h(t,s,o)u(o)logu(o) dods.

Therefore, Theorem 2.4 implies u(t) < (a(T))*P(B2() and, for T = t,
we obtain u(t) < (a(t))*P(B2(®),

3. Some further inequalities

In this section, we present a generalization of the result obtained
in Theorem 2.4 and some new integral inequalities involving iterated
integrals. Let o < 8 and set J; = {(¢1,t2,... ,t;) € R:.:a<t<---<
ti <fB}fori=1,...,n
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THEOREM 3.1. Let u(t) and b(t) be nonnegative continuous functions
in J = |a,f] and a > 1 be a constant. Suppose that

(3.1)
u(t)
t
< a+/ b (b, £1)u(ts) log u(ts) dty + -«
ta ty th_1
+/ (/ (/ kn(t,t1,. .. to)u(ty)logu(ty,) dtn> ---)dtl
[0 4 a4 «
for any t € J, where k;(t,t1,... ,t;) are nonnegative, continuous func-
tions in Jiy; fori=1,2,... ,n.
Suppose the partial derivative 8—[;“t—i(t, t1,...,t;) exists and are nonneg-
ative, continuous in J;y1 fori =1,2,... ,n, which are nondecreasing in

t € J for any fixed (t1,... ,t;) € J; fori =1,... ,n. Then, for any t € J,
(3.2) u(t) < a®*P(Bs (1))

where B (t) = [L(R[1](7) + Q[1](r)) dr, and

t

R{(t) = ka(,8) + / Fa(t, £, t2))dz

[t

n t to ti—1
+Z/ (/ (/ kz(t,t,tg,,tz)dtz)>dt2,
=3 « [2% (s

Qo = [ i)

+i/t(/:l.--(/:i—l%(t,tl,... ,ti)dti>~~-)dt1.

=2V

Proof. We denote the right-hand side of (3.1) by v(¢). Then, for
a <t < B, (3.1) implies v(a) = a, the function v(¢) is nondecreasing
continuous, u(t) < v(t) and we have

(3.3) v'(t) = Rulogu](t) + Qlulogu](t),
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where

R[ulogu](t)

= ki1(t, t)u(t) log u(t) + /t ka(t, t, ta)u(ta) log u(ts)dts

N é/: (/: (/:i"l kit b1, ... ,ti)u(t,-)logu(ti)dti) ) dt,

Qlulogul(t)

* Ok,
= E (t, tl)u(tl) lOg u(tl) dtl

. é/:(/: . (/: %’—z—i(t,tl,... ,ti)u(ti)logu(ti)dti> > dt,.

We note that R[ulogu] and Q[ulogu] are linear functionals and
Rluilogu;] < Rluglogug], Q[u1logui] < Qug logus]
if w1 logu; < ugloguy for any ¢ € J, and
Rlulogu] < Rllogulu, Q[ulogu] < Q[logu]u

if log u(t) is nonnegative in J and u(t) is nondecreasing in J. The equality
(3.3) implies the estimate

(3.4) v'(t) < {R[logv](t) + Q[log v](t) }u(2).
From (3.4), we have

<

'(t)
v(t)
By taking ¢ = s in (3.5) and then integrating it from 0 to any t € J, we
obtain

(3.5)

< Rlogv(t) + Q[log v](2).

t

(3.6) logv(t) < loga +/ (R[logv](s) + Q[logv](s)) ds.

«

Now, we denotes the right-hand side of (3.6) by wv;(t). Then v;(a) =
loga, logv(t) < vy(t), the function v1(¢) is nondecreasing in t € [a, ]
and

(3.7) vi(t) < {R[1](¢) + Q1) }va (2).
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The condition (3.7) implies that

(49~ (o) + Q[I](s)}vl(s)> exp ( / {RI(7) + Q) ar) <o

fora<sor

s [”1(3) P ( / (Rl + QM) dT)] <o.

Integrating over s from « to any t € [«, (], we have

(3.8) v1(t) < log aexp(Bs(t)) = log a™PBs®),

where Bs(t) = fat{R[l](T) + Q[1](7)} d7. The desired inequality in (3.2)
now follows by using log v(t) < v1(t) in (3.8) and then u(t) < v(t). This
completes the proof. g

THEOREM 3.2. Let u(t) and b(t) be nonnegative continuous functions
in J = [, (] and a > 1 be a constant. Suppose that
(3.9)

u(t)

t
< a+/ kl(t,tl)u(tl)logu(tl)dtl + -

(a3

_|_/at (/:1 (/atn_I kn(t,t1,. .. ,tn)u(tn)logu(tn)dtn> ~~->dt1

for any t € J, where k;(t,t1,... ,t;) are nonnegative, continuous func-
tions in J;, fori=1,2,... ,n, which are nondecreasing int € J for all
fixed (t1,... ,t;) € J; fori=1,... ,n. Then, for any t € J,

(3.10) ul(t) < a®P(Ba(t))

where By(t f R[1)(t, 7) dr, and

Bl 7) = ka (2, 7) + / ka(t, 7 £2))dta

+Z/ (/ (/t lki(t,'r,tz,... ,ti)dti)-~-)dt2,
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Proof. For any fixed T € (o, 3] and o <t < T, we define a function
w(t) by

w(t)

t
:a+/ k1 (T, t0)u(ty) log u(ty) dty + - -

+/: (/:1 . (/:H k(T t1, ... ,tn)u(tn)logu(tn)dtn) ~--)dt1.

Then w(e) = a, the function w(t) is nondecreasing continuous and
u(t) < w(t). Since %ﬁti(T,tl,... ,ti)) =0foralli =1,...,nand t €
J = |a, B], we have

(3.11) w'(t) = R[ulogu)(T,1t),
where

~

Rlulogul(T,t)
= k1(T, t)u(t) logu(t) + /t ko(T, t, t2)u(tz) log u(ts)dts

n t ta ti—1
+Z/ (/ (/ ki(T,t,tg,. .. ,ti)u(ti)logu(ti)dti) ---)dtz.
i—3 v a a
The equality (3.11) implies the estimate
(3.12) w'(t) < {R[log w](T, t)}w(t).

From (3.12), we have

(3.13) < Rllog w](T, t).

By taking ¢t = s in (3.13) and then integrating it from « to any t € J,
we obtain

t

(3.14) logw(t) <loga +/ Rllog w|(T, s) ds.

(o4
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Now, we denotes the right-hand side of (3.14) by wy(¢). Then wy(a) =
loga, logv(t) < wy(t), the function wy (t) is nondecreasing in ¢ € [a, 3]
and

(3.15) wy (8) < {B[(T, )} (1)
The inequality (3.15) implies the estimate

(wl s) = {BI1](T, £)}wn (s )exp(/{Rl]TT}dT)_

fora <sor

t

% [wl(s) exp(/ {R)(T, 1)} dT)] <0.

Integrating over s from « to any t € J = [«, (], we have
(3.16) wi(t) < logaexp(Ba(t)) = log ae"p(B“(t))

where By(t f {R[1](T,7)} dr. In particular, for T = ¢, we find the
desired 1nequahty in (3.10) now follows by using log w(t) < w;(t) in (3.8)

and then wu(t) < w(t). This completes the proof. d0
THEOREM 3.3. Let u, f1,...,fn be nonnegative, continuous func-
tions in J = [a, §]. Suppose that
(3.17)
u(t)

t
< “+/ Filtr)u(ty) logu(ts) dty + -+

+ /at fl(t1)< :1 fa(ta) - </¢:n—1 fn(tn)u(tn)logu(tn)dtn> "‘>dt1

for any t € J, where a > 1 is a constant. Then
(3.18) u(t) < Ry(t)
for any t € J, where

R = [2- [ @ e 2 n0 4 a]

for any t € [o, 1), where 51 is chosen so that the expression between
[---] is positive in the subinterval |a, ;61) and

_a+/ Ri1(s ( 21_kfk(s)) ds

foranyte Jandi=n—1,.
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Proof. We set
ui(t) = a+ Lifulogul(t), wjt1(t) =uj + Ljs1[ulogul(t)
foranyt€ Jand j=1,...,n—1, where
Lyfulogu](t)

= /t Se(t)u(ty) log u(te) dtg, + - - -

+/at fk(tk)(/: fra(tegr) - - (/: fn(tn)u(tn)logu(tn)dtn) ) dty

for any t € J and k =1,... ,n. Now, (3.17) implies
(3.19) u(t) < ui(t).
Taking into account that ug(t) < wks1(t), (Lrfulogul) < fe(u?(t) +
Liyifulogu]) fork=1,... ,n— 1 and
(Lpfulogu)) = fr(t)u(t)logu(t),
for k=2,... ,n — 1, we successively have
ui(t) = (Lifulogu](t))’ = fi[u?(t) + La[ulogu]]
< filui(t) + Lafulogu]] = fiua,

3.20
(320) up(t) <21+ 2572 + o 4 fio)uk,
Up(t) S 2"TAF2VT oA A fu)ud (2).
According to (3.20), the function z = —u_ ! satisfies
(3.21) dt) =urtuy S2TUA 2" P o 4t S

By taking t = sin (3.21) and then integrating it from & to any t € [a, 8;),
we have

(3-22) un(t) < B —/ (2”‘1f1(s)+2"‘2f2(s)+~--+fn(s))dsJ— ;

where (31 is chosen so that the expression between |[- - -] is positive in the
subinterval [a, £1). Define a function R, (t) by the right side of (3.22).
Then (3.20) and (3.22) gives

t Ry <Z 2tk fk(s)) ds

k=1

fori =n-—1,...,1. For i =1, (3.19) and (3.23) imply (3.18). This
completes the proof. O

(3.23) u(t) <a +/

o
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4. Applications

In this section, we show that our main results are useful in showing
the global existence of solutions to certain integro-differential equations
of the form

(4.1) T'(t) = F<t, s, z(t),

t

flt,5,2(5))ds )

to
for any ¢t € J = [a, 8] with the given initial condition
(4.2) x(to) = Ty,

where f € C(J? x R,R), F € C(J? x R%,R) and zp > 1 is constant.
Assume that

(4.3) t |F(s,0,u,v)|ds < /t(k(t, s)|ullog |u| + ha (t)[v]) ds,
to to

(4.4) |£ (&, s,u)| < ha(t, s)lullog |ul,

(45) h’l (t)h2(s’ 0) < h’(ta S, U),

where the functions k(t, s) and h(t, s, o) are defined as in Theorem 2.4
fora<o<s<t<g.

If z(t) is a solution of the equation (4.1) with (4.2), the solution z(t)
can be written as

(4.6) z(t) =zo + /t: F<s, a,z(o), t: f(s,a,z(0)) da) ds

for any t € J. Using (4.3)~(4.5) in (4.6) and making the change of
variables, we have

|lz(¢)| < |zol +/ k(t,s)|z(s)| log|z(s)| ds
(4.7)

to
t s
+ / / h(t, s, 0)|z(0)] log |(0)| do ds.
tg J1

0

Now, a suitable application of Theorem 2.4 to (4.7) yields

| log |z(t)| < (log |zol) exp(B2(t)),
which implies that z(¢) is bounded.
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