DOI QR코드

DOI QR Code

THE GROUPS OF SELF PAIR HOMOTOPY EQUIVALENCES

  • Lee, Kee-Young (Department of Information and Mathematics Korea University)
  • 발행 : 2006.05.01

초록

In this paper, we extend the concept of the group ${\varepsilon}(X)$ of self homotopy equivalences of a space X to that of an object in the category of pairs. Mainly, we study the group ${\varepsilon}(X,\;A)$ of pair homotopy equivalences from a CW-pair (X, A) to itself which is the special case of the extended concept. For a CW-pair (X, A), we find an exact sequence $1\;{\to}\;G\;{\to}\;{\varepsilon}(X,\;A)\;{to}\;{\varepsilon}(A)$ where G is a subgroup of ${\varepsilon}(X,\;A)$. Especially, for CW homotopy associative and inversive H-spaces X and Y, we obtain a split short exact sequence $1\;{\to}\;{\varepsilon}(X)\;{\to}\;{\varepsilon}(X{\times}Y,Y)\;{\to}\;{\varepsilon}(Y)\;{\to}\;1$ provided the two sets $[X{\wedge}Y,\;X{\times}Y]$ and [X, Y] are trivial.

키워드

참고문헌

  1. M. Arkowitz, The group of self-homotopy equivalences- a survey, Lecture Notes in Math. 1425 (Springer, New York, 1990), 170-203
  2. M. Arkowitz and G. Lupton, On finiteness of subgroups of self-homotopy equiva- lences, Contemp. Math. 181 (Amer. Math. Soc., 1995), 1-25 https://doi.org/10.1090/conm/181/02026
  3. P. Hilton, Homotopy theory and duality, Gordon and Beach Science Publishers, New York, 1965
  4. K. Maruyama, Localization of a certain subgroup of self-homotopy equivalences, Pacific J. Math. 136 (1989), 293-301 https://doi.org/10.2140/pjm.1989.136.293
  5. S. Oka, On the group of self-homotopy equivalences of H-spaces of low rank, I, II, Mem. Fac. Sci, Kyushu Univ. Ser. A 35 (1981), no. 2, 247-282, 307-323
  6. J. Rutter, The group of self-equivalence classes of CW complexes, Math. Proc. Cambridge Phil. Soc. 93 (1983), no. 2, 275-293
  7. S. Sasao, Self-homotopy equivalences of the total spaces of a spere bundle over a sphere, Kodai J. Math. 7 (1984), no. 3, 365-381 https://doi.org/10.2996/kmj/1138036956
  8. N. Sawashita, On the group of self-equivalences of the product spheres, Hiroshima Math. J. 5 (1975), 69-86
  9. H. Shiga, Rational homotopy type and self-maps, J. Math. Soc. Japan 31 (1979), no. 3, 427-434 https://doi.org/10.2969/jmsj/03130427
  10. A. Sieradski, Twisted self-homotopy equivalences, Pacific J. Math. 34 (1970), 789-802 https://doi.org/10.2140/pjm.1970.34.789
  11. E. Spanier, Algebraic topology, McGraw-Hill, New York, 1966
  12. K. Tsukiyama, Self-homotopy equivalences of a space with two nonvanishing ho- motopy groups, Proc. Amer. Math. Soc. 79 (1980), no. 1, 134-138

피인용 문헌

  1. Certain maps preserving self-homotopy equivalences vol.12, pp.3, 2017, https://doi.org/10.1007/s40062-016-0144-0
  2. Certain numbers on the groups of self-homotopy equivalences vol.181, 2015, https://doi.org/10.1016/j.topol.2014.12.004