DOI QR코드

DOI QR Code

POLYNOMIAL-FITTING INTERPOLATION RULES GENERATED BY A LINEAR FUNCTIONAL

  • 발행 : 2006.04.01

초록

We construct polynomial-fitting interpolation rules to agree with a function f and its first derivative f' at equally spaced nodes on the interval of interest by introducing a linear functional with which we produce systems of linear equations. We also introduce a matrix whose determinant is not zero. Such a property makes it possible to solve the linear systems and then leads to a conclusion that the rules are uniquely determined for the nodes. An example is investigated to compare the rules with Hermite interpolating polynomials.

키워드

참고문헌

  1. K. E. Atkinson, An Introduction to Numerical Analysis, John Wiley and Sons, 1989
  2. R. L. Burden and J. D. Faires, Numerical Analysis, Brooks/Cole, 2001
  3. L. Gr. Ixaru, Operations on Oscillatory Functions, Comput. Phys. Comm. 105 (1997), 1-19 https://doi.org/10.1016/S0010-4655(97)00067-2
  4. L. Gr. Ixaru and B. Paternoster, A Gauss Quadrature Rule for Oscillatory Integrands, Comput. Phys, Comm. 133 (2001), 177-188 https://doi.org/10.1016/S0010-4655(00)00173-9
  5. L. Gr. Ixaru, M. Rizea, H. De Meyer, G. Vanden Berghe, Weights of the exponential fitting multistep algorithms for first order ODEs, J. Comput. Appl. Math. 132 (2001), 83-93 https://doi.org/10.1016/S0377-0427(00)00599-9
  6. L. Gr. Ixaru, G. Vanden Berghe and M. De Meyer, Exponentially fitted variable two-step BDF algorithm for first order ODEs, Comput. Phys. Comm. 150 (2003), 116-128 https://doi.org/10.1016/S0010-4655(02)00676-8
  7. L. Gr. Ixaru, G. Vanden Berghe and M. De Meyer, Frequency evaluation in exponential fitting multistep algorithms for ODEs, J. Comput. Appl. Math. 140 (2002), 423-434 https://doi.org/10.1016/S0377-0427(01)00474-5
  8. K. J. Kim, Two-frequency-dependent Gauss quadrature rules, J. Comput. Appl. Math. 174 (2005), 43-55 https://doi.org/10.1016/j.cam.2004.03.020
  9. K. J. Kim, R. Cools and L. Gr. Ixaru, Quadrature rules using first derivatives for oscillatory integrands, J. Comput. Appl. Math. 140 (2002), 479-497 https://doi.org/10.1016/S0377-0427(01)00483-6
  10. V. I. Krylov, Approximate Calculation of Integrals, Macmillan, New York, 1962
  11. W. Rudin, Principles of Mathematical Analysis, McGRAW-Hill, Singapore, 1976