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ITERATIVE APPROXIMATIONS OF ZEROES FOR
ACCRETIVE OPERATORS IN BANACH SPACES

YEeoL JE CHO, HATYUN ZHOU, AND JONG KyU KiMm

ABSTRACT. In this paper, we introduce and study a new iterative
algorithm for approximating zeroes of accretive operators in Banach
spaces.

1. Introduction

Let E be a real Banach space, A C E x E be an m-accretive operator
and J,. = (I + 7A)~! be the resolvent of A for all r > 0. A well-known
method is the following:

(1.1) { ro=x € F,

Tpt1 = Jrn:Ena n > Oa

where {7,} is a sequence of positive real numbers. The convergence of
(1.1) has been studied by Brézis and Lions [1], Bruck and Passty [3],
Bruck and Reich [4], Jung and Takahashi [6], Lions [8], Nevanlinna and
Reich [11], Pazy [13], Reich [14]-[16], Rockafellar [17], etc.

On the other hand, Halpern [5] and Mann [10] introduced the fol-
lowing iterative schemes for approximating fixed points of nonexpansive
mappings T of E into itself:

(1.2) { veE,

Tnt1 = anZ + (1 — ap)Tz,, n >0,
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and

(1.3) { %o € B,

Tpt1 = 0n&n + (1 — an)Tz,, n >0,

respectively, where {ay,} is a sequence in [0,1]. The iterative schemes
(1.2) and (1.3) have been studied extensively by Takahashi [19], [20] and
others (see the references therein).

Motivated by (1.1), (1.2) and (1.3), Kamimura, Khan and Takahashi
[7] studied two iterative schemes to solve the relation 0 € Av, where A
is an accretive operator satisfying the range condition, that is,

D(A) C NysoR(I + T A).

Let C be a nonempty closed convex subset of F such that D(A) C
C C Ny>oR(I+1A). Then the correspondence to (1.2) and (1.3) are the
following, respectively:

Tpnt1 = P(anx + (1 - an)Jrnxn + fn)a n 20,

and
Tnp1 = Plopzn + (1 — an)Jdr, Tn + fn), n >0,

where P is a nonexpansive retraction of E onto C and f, is the term
showing a computational error.
In this paper, we introduce a new iterative scheme

(1.4) Tni1 = onU + BnJr, Tr, + YnPen, - n >0,

where {an}, {8r}, {7} are sequences in [0,1], {e,} is a sequence in E
and {r,} is a sequence in (0, 0c) satisfying the following:

(1) an+Bn+vn =1,
o o0
(i) > an =400 and 3 v, < +oo,

n=0 n=0
(iii) 7, — oo as n — oo,
(iv) {en} is bounded
and show that, if A70 # @, then the sequence {z,} defined by (1.4)
converges strongly to a zero of A. Also we give some weak convergence
theorems of the sequence {z,} defined by (1.4).
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2. Preliminaries

Throughout this paper, let E be a real Banach space with norm || - |
and let E* denote the dual space of E. We denote the value of y* € E*
at z € E by (z,y*). When {z,} is a sequence in E, we denote strong
convergence of {z,} to x € E by z, — z and weak convergence by
zn, — x weakly. The modulus of convexity of E is defined by

) Tty
s0) = inf {1~ 12X <1,y <1, o -yl > )

for any € with 0 < € < 2. A Banach space E is said to be uniformly
convez if d(e) > 0 for every € > 0. If E is uniformly convex, then §

satisfies z+y )
|=*=r(-4())

for any x,y € E with ||z|]| <7, |ly|| <7 and ||z —y|| > e Let U= {z €
E : ||z| = 1}. The normalized duality mapping J from E into 27" is
defined by

Je={f€E":(z,f) == = | £]*}

for any z € E. The norm of F is said to be uniformly Gateauz differen-
tiable if, for each y € U, the limit

S R

(2.1) lim n

is attained uniformly for z € U. It is also said to be Fréchet differentiable
if, for each x € U, the limit (2.1) is attained uniformly for any y € U. It
is known that, if the norm of E is uniformly Gateaux differentiable, then
the normalized duality mapping J is single valued and uniformly norm
to weak® continuous on each bounded subset of E. A Banach space FE
is said to satisfy Opial’s condition ([12]) if, for any sequence {z,} in E,
T, — y weakly implies

liminf ||z, — y|| < liminf ||z, — z||
n—oo n—oco

for any z € E with z # y.
Let C be a closed convex subset of E. A mapping T : C — C is said
to be nonexpansive if

1Tz — Tyl < ||z -yl



240 Yeol Je Cho, Haiyun Zhou, and Jong Kyu Kim

for all z,y € C. We denote the set of all fixed points of T by F(T).
A closed convex subset C of E is said to have the fized point property
for nonexpansive mappings if every nonexpansive mapping of a bounded
closed convex subset D of C into itself has a fixed point in D. Let D be
a subset of C. We denote the closure of the convex hull of D by ¢6D.

A mapping P of D into itself is said to be a retraction if P> = P. A
subset D of C' is said to be a nonexpansive retract of C' if there exists a
nonexpansive retraction of C onto D.

Let I denote the identity operator on E. An operator A C F x E with
domain D(A) = {z € E : Az # 0} and range R(A) = U{Az: z € D(A)}
is said to be accretive if, for each z; € D(A) and y; € Az;, i = 1, 2,
there exists j € J(x1 — z3) such that

(1 —y2,J(x1 — x2)) > 0.

If A is accretive, then we have

lz1 — 22|l < |lz1 — 22 + (Y1 — y2)|

for any z; € D(A), y; € Az;,i=1,2,and r > 0.
An accretive operator A is said to satisfy the range condition if

D(A) C NrsoR(I + 1 A).

If A is accretive, then we can define a nonexpansive single valued
mapping J,. : R(I +rA) — D(A) by

Jr=(I+rA)™"

for each r > 0, which is called the resolvent of A. We also define the
Yosida approzimation A, by

1
Ar= (1= 0,).

We know that A,z € AJ,x for all z € R(I + rA) and ||4,z| <
inf{||y]| : y € Az} for all z € D(A)NR(I +rA). Also it follows that, for
an accretive operator A satisfying the range condition, A=10 = F(J,)
for all r > 0.

An accretive operator A is said to be m-accretive if R(I +rA) = E
for any r > 0.
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In the sequel, unless stated otherwise, we assume that A C F x E is
an accretive operator satisfying the range condition and that J,. is the
resolvent of A for r > 0.

Now, we need the following lemmas for our main results.

LEMMA 2.1. ([9]) Let {an}, {bn} and {c.} be sequences of positive
real numbers satisfying

ant1 < (1 —tn)an +by+cn, n>0,

where {t,} C [0,1] with ¢, — 0 asn — oo and Y t, = 00, by, = o(t,)
n=0
o0

and Y ¢, < +o0o. Then a, — 0 as n — co.
n=0

LEMMA 2.2. ([22]) Let E be a real reflexive Banach space whose
norm is uniformly Géateanx differentiable and A C FE x E be an accretive
operator. Suppose that every weakly compact convex subset of E has the
fixed point property for nonexpansive mappings. Let C be a nonempty
closed convex subset of E such that D(A) C C C NysoR(I +rA). If
A~'0 # 0, then the strong limit lim;_, ., J;x exists and belongs to A~'0
for all x € C, where J; = (I +tA)~! is the resolvent of A for all t > 0.

3. Strong convergence theorems

First, we give some strong convergence theorems of a new iterative
sequence {z,} defined by (1.4) to a zero of the given mapping A in
Banach spaces.

THEOREM 3.1. Let E be a real reflexive Banach space with a uni-
formly Gateaux differentiable norm and A C E x E be an accretive
operator. Let C be a nonempty closed convex nonexpansive retract of
E onto C. Suppose that every weakly compact convex subset of E has
the fixed point property for nonexpansive mappings. Let {x,} be a
sequence generated by

{u,xoec,

(3.1)
Tpiyl = QU+ ﬂnJrnxn + ’anen, n >0,

where the sequences {on}, {6}, {w} C [0,1], {en} C E and {r,} C
(0, 00) satisfy the following:

(i) an + B+ =1,
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o0 o0

(i) > an =400 and Y v, < 400,
n=0 n=0

(iii) r, — 00 as n — oo,

(iv) {en} is bounded.

If A=10 # 0, then the sequence {z,} converges strongly to a zero of A.
ProOOF. We finish the proof by three steps.

Step 1. {z,} is bounded.
To prove this, take a fixed element p € A~10 and set

M = max{||zo — p||, [lu — pll,sup [len — p|I}-
n>0

Then we have ||zo —p|| < M and ||u—p|| < M. Assume that ||z, —p|| <
M for some positive integer n. Then, by using (3.1), we have

[#n41 — Pl < anllu —pll + BallJr,zn — Pl + Yall Pen — pll
< anM + Bulizn — pll + Ynllen — pl|
< (o + Bn+ )M
= M.

Thus, by induction, we assert that ||z, — p|| < M for all n > 0 and
hence {z} is bounded and, further, {J._ z,} is also bounded since J,._
is nonexpansive.

Step 2. limsup,, . (u — 2z, J(Tnt1 — 2) < 0, where 2z = lim;_, o, Jyu,
which is guaranteed by Lemma 2.2.

We first prove that, for all t > 0,

(3.2) limsup(u — Jyu, J(Jr, zn — Jeu)) < 0.
n—00
Indeed, since (ﬁ:gﬂl € Adiu, A, x, € AJ; x, and A is accretive,
we have 1
(Ar, Tn — ;(u — Sy, J(Jp, xn — Jru)) >0
and so

(u— Jyu, J(Jr, zn, — Jrw)) < H{Ar, zn, J(Jr, T — Jeu))

for all » > 0 and ¢ > 0. Then, by using the fact that A, z, = (ﬁ%’ﬁ —
0 as n — oo, we obtain

limsup{u — Jyu, J(Jr, zn — Jru) <0

n—oo
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for all ¢ > 0, which proves our assertion. Since the norm of F is uniformly
Gateaux differentiable and Jyu — 2z € A710 as ¢ — oo, we can prove
that

(3.3) limsup(u — 2, J(J,, 2n — 2)) < 0.

n—o0

Noting that
Tng1 — Ir, Ty = apu+ (Bp, — 1)Jy Zn + mPey, — 0

as n — 0o and using the uniformly Gateaux differentiability of the norm
again, we have

lim |(u— 2z, J(@p41 — 2))) — (u— 2, J(Jr,zn, — 2))| =0

n—o0

and hence
limsup(u — 2, J(2n41 — 2)) <0,

n—oo
which finish the proof of Step 2.
Step 3. z, — 2€ A”10 as n — oo.
From
Tp+1l — R
= anp(u — 2) + Bn(Jr, zn — 2) + Yn(Pep, — 2)
= (1 —an)(Jr,zn — 2) + an(u — 2) + W (Pen — Jr, Zn),
it follows that
Znt1 — 2[?
< (1= an)?|Jrp@n — 2II* + 2 (u — 2, J(zn41 — 2))
+2rn(Pep ~ Jr, Tn, J (Tny1 — 2))
< (1~ an)llzn — 2|* + 200 (u — 2, J(@n41 + 2))
+ 2rnllen — Jr, Tl |Znta — 2|l
< (1~ ap)llzn — 2% + 200 (u — 2, J(Tn41 = 2)) + K7n

(3.4)

for some constant K > 0. Define o, = max{(u — z, J(zny1 — 2)),0}.
Then, by virtue of Step 2, we can prove that o, — 0 as n — oo. It
follows from (3.4) that

(3.5) lznt1 — z||2 < (1 - ap)llzn — sz + 20,05 + Kyn.
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By setting a, = ||z, — 2||?, tn = an, by = 20,0, and ¢, = K~,, then
(3.5) reduces to the following:

Any1 < (1 - tn)an +by+cn, n2=>0,

o0 o0
witht, — 0, Y t, =00, b, = o(t,) and > ¢, < +00. Now Lemma 2.1

n=0 n=0
is applicable to get the desired conclusion. This completes the proof. O
From Theorem 3.1, we have the following:

COROLLARY 3.2. Let C be a nonempty closed convex nonexpansive
retract of a reflexive Banach space E whose norm is uniformly Gateaux
differentiable, P be a nonexpansive retraction of F onto C and T : C —
C be a continuous pseudo-contractive mapping. Suppose that every
weakly compact convex subset of E has the fixed point property. Let
{zn} be a sequence generated by

u, xg € C,
Yn = o + T2 TYn, n 20,
zn+ 1= ayu+ BuyYn + WmPen, n >0,

where the sequences {an}, {Bn}, {1n} C [0,1], {en} C E and {r,} C
(0, 00) satisfy the following:
(i) an+Bn+vm =1,
(il)) anp — 0 asn — oo,
(ifi) X2 0 = 00 and T4y, < +00,
(iv) rp — 00 as n — oo,
(v) {en} is bounded.

If F(T) # 0, then the sequence {x,} converges strongly to a fixed point
of T.

PrROOF. Set A =1 —T. Then A : C — E is continuous accretive,
satisfies the range condition:

D(A) = C C Npso(I +1A4)

and A=10 = F(T) (see [18]). Now, applying Theorem 3.1, we can obtain
the desired conclusion of the theorem. O
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4. Weak convergence theorems

Now, we give some weak convergence theorems of the sequence defined
by (1.4). We need the following lemmas for our main results in this
section.

LEMMA 4.1. ([2]) Let C be a closed bounded convex subset of a
uniformly convex Banach space E and T : C — C be a nonexpansive
mapping. If a sequence {x,} in C converges weakly to z € C and
{xn, — Tx,} converges strongly to 0 as n — oo, then Tz = z.

REMARK. Lemma 4. 1 is still true without assuming the condition
that C is bounded.

LEMMA 4.2. ([15], [21]) Let E be a uniformly convex Banach space
whose norm is Fréchet differentiable, C' be a nonempty closed convex
subset of E and {T,,}°2, be a sequence of nonexpansive mappings of
C into itself such that NS o F(T,) is nonempty. Let z € C and S, =
T, Ty1--+ Ty for all n > 0. Then the set N yCo{Spmx : m > n}NU
consists of at most one point, where U = NS F(T'n).

THEOREM 4.3. Let E be a uniformly convex Banach space whose
norm is Fréchet differentiable or which satisfies Opial’s condition and
A C E x E be an accretive operator. Let C be a nonempty closed
convex nonexpansive retract of E such that

D(A) € C C NrsoR(I +14)

and P be a nonexpansive retraction of E onto C. Let {zy} be a sequence
generated by

{ xg=2a € C,
Tntla = QnTp + ﬂn']rnxn + v Pen, n 20,

where the sequences {an}, {On}, {7} C [0,1], {rn} C (0,00) and {e,}
C FE satisfy the following:

1) Op + B+ =1,

(ii) limsup,,_ o, an < 1,

iii) £ 7, < +00,

iv) liminf,, e mn > 0,
)

(v) {en} is bounded.
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If A=10 # 0, then the sequence {x,} converges weakly to a zero of A.

PROOF. Since A710 # ), we can fix an element p € A70 and set

M = max{||zo — pll,ig%{ilen = pll}}-

Then we can prove that {z,} is bounded. Indeed, ||zo—p| < M. Assume
that ||z, — p|| < M for some n > 0. Then we have

|Zn+1 — pll < anlizn = pll + Ball Jr, Tn — pll + Vnll Pen — p
< anM + Bnllzn — pll + Ynllen — pll
<(an+Bn+vm)M
=M.

By induction, we assert that {z,} is bounded.
Next, we prove that lim,_,o ||, — u|| exists for any u € A~10. In
fact,
[Zn41 — ull < (an + Bo)llzn — ull + M
< lzn —ull +mM,

which implies that lim,_, . ||z, — u|| exists since X oy, < +o00. Write
d = lim, o ||Tn, — u|| for any u € A=10. Without loss of generality, we
assume that d > 0. Since A is accretive and E is uniformly convex, we
have

| Jrn@n — ull < ||Jr,@n —u+ %(Arnmn - O)H
1
=||Jr, Tn —u+ E(xn —Jr, Tn)
_ Ty — Jrnmn _ UH
N 2
|z — Jr, Tnll
< - —g{En  vreaoni
< llow = ull[1 - 5( 2 — u] )]
and hence
|z — Jr, zall
]' - n n - —_—
(1= an)llon — w6 (220 )

< (A —an){llzn —ull = |Jr,zn — ull}

= ||lzn —ull = anllzn — ul| = (1 — an) || Jr, 20 — ull

= |lzn —ull — anllzn —ull = (1 = an)|| Jr, 20 — ull = M + v M
< Nzn — ull = [|#n41 — ull + M
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for all n > 0. Using assumptions lim, o @, < 1 and lim,, o ||Z,~ul| =
d > 0, we obtain

5(“&‘&%) —0 (n— o),

[ — ull

which implies that xz, — J. z, — 0 as n — o0. Let v € E be a weak
subsequential limit of {z,} such that z,,, — v as i — co. Then it follows
that Jrnia:ni — v as ¢ — oo. From

“J,-nilin - JIJrnxn” = ”(I - Jl)Jrnxn“

= A1 Jr, 24|l
< inf{|jz|| : 2 € AJ, zp}
anrnxn
< Ar, ] = | =222
n

and lim, .o rn, > 0, we obtain J. zn, — J1J, z, — 0 as n — oo. Thus
it follows from Lemma 4.1 that v € F(J;) = A~10.

Now, we only prove Theorem 4.3 for the case that E has a Fréchet
differentiable norm. Define a mapping T, : C — C by Thx = anx +
Bndr,x + Pz for all n > 0. Then {T,} is a family of nonexpansive
mappings of C into itself and NS F(T;,) = A710. It is clear that

n=0
(4.1) Tyl = DTnp + Yn(Pen — ), n>0.

Now, we consider the following two cases:

Case 1. v, =0 for all n > 0.

In the case, (4.1) reduces to z,41 = Thz, for all n > 0. Putting
Sp = T,Th—1--- Ty, then z,11 = Spz for all n > 0. It follows from
Lemma, 4.2 that x, — v € A710 weakly as n — oo.

Case 2. v, # 0 for some n > 0.

Our discussion follows an idea of Brézis and Lions [1, Remarque 14].
Let Upz = Tnz+vyn(Pen—z) forall 2 € Cand n > 0. Then 2,41 = Upzy.
Now, for any fixed m > 0, define a sequence {z,(m)} by

zo(m) = &m, znt+1(m) = Thymzn(m), n>0.

From the case 1, we know that {z,(m)} converges weakly to some z(m) €
A~10 and hence

(42)  [lz(m+1) = z(m)] < liminf ||z (m + 1) — 21 (m)].
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Observe that

lzn(m + 1) = zp4a (m)|
= |TnsmTntm-1- Tms1Tms1 — TnomTnym—1-- T o ||
< Nzms1 = T |
= Yn||Pem — Tm||
< Mvm, n,m20,

where M = sup{||Pes, — Zn|| : m > 0}. This together with (4.2) implies
that
z(m + 1) —z(m)|| < My, m 20,

and hence

S llzlm+1) = 2(m)| < MY < oo,
m=0

m=0

which implies that {z(m)} is a Cauchy sequence and so z(m) — a €
A~10 as m — oo since A710 is closed. Since

| Zrn+m+1 — 2ns1(m)|

= lIUn+mUn+m—l co Umxm - Tn+an+m—1 T memH

n-+m

< M Z Y
l=m

we have

[(Tntm+1 — a, )|
= [(Tntmt1 = 2nt1(M), A) + (2nr1(m) — 2(m), h) + (2(m) — a, b)|

n+m

< (MY e+ lz(m) = all) 1Bl + | (znsa(m) = 2(m), b)]
I=m

for all h € E* and n,m > 0. Fixing m > 0 and letting n — oo, then we
have

lim sup |{z,, — a,h)| = limsup [{(Zptrms+1 — a, h)|
n—oo n—oo

(4.3)

IA

(M3 3+ l12m) — al ) 4]
l=m
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for all h € E* and m > 0. Letting m — oo in (4.3) yields that

Hmsup |(z, — a, h)| <0,

n—o0

which implies that the sequence {z,} converges weakly to a € A~10.
This completes the proof. O

From Theorem 4.3, we have the following:

COROLLARY 4.4. Let C be a nonempty closed convex nonexpansive
retract of a uniformly convex Banach space E whose norm is Fréchet
differentiable or which satisfies Opial’s condition, P be a nonexpansive
retraction of E onto C' and T be a continuous pseudo contraction of C
into itself. Let {x,} be a sequence generated by

xg, z € C,
Yn = ﬁxn + 1+.,« Tyn) n Z 0?
Tntl = CnZy + ﬂnyn + 'YnPena n > 0,

where the sequences {an}, {Bn}, {¥n} C[0,1], {rn} C (0,00) and {e,}
C E satisfy the following:

(i) an+But+m=1,
(ii hm SUD,, 00 n < 1,

)

) Z’yn<+oo
=0
)
)

(iii

(iv llm inf, oo Tn > 0,
(v) {en} is bounded.

If F(T) # 0, then the sequence {x,} converges weakly to a fixed point
of T.
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