Preparation and Flame Retardancy Effect of Polyurethane Coatings Containing Phosphorus and Chlorine

인과 염소를 함유하는 폴리우레탄 도료의 제조와 난연효과

  • Published : 2006.05.01

Abstract

The aim of this study is to enhance the flame retardancy by the synergism effect of chlorine and phosphorus groups. The flame-retardant polyurethane coatings containing chlorine and phosphorus compounds were synthesized. After synthesizing the intermediate products of tetramethylene bis (orthophosphate) (TMBO) and neohexanediol trichlorobenzoate (TBA-adduct), the condensation polymerization was performed with four different monomers of two intermediates, 1,4-butanediol, and adipic acid to obtain four-component copolymer(TTBA). The two-component flame-retardant polyurethane coatings (TTBA-10C/HDI-trimer=TTHD-10C, TTBA-20C/HDI-trimer=TTHD-20C, TTBA-30C/HDI trimer=TTHD-30C) were obtained by curing reaction at room temperature with the synthesized TTBAs and hexamethylene diisocyanate (HDI)-trimer as a curing agent. The obtained TTHDs were made into coating samples and used as test samples for various physical properties. The physical properties of the flame-retardant coatings containing chlorine and phosphorus groups were generally inferior to those containing only phosphorus group. Flame retardancy was tested by vortical and horizontal combustion method, and $45^{\circ}$ Meckel burner method. Since the retardancy of flame-retardant coatings containing chlorine and phosphorus groups was better than that containing only phosphorus group, it could be concluded that the retardancy by the synergism effect of chlorine and phosphorus groups exhibited.

본 연구에서는 인과 염소를 공유한 폴리우레탄(PU) 난연도료를 제조하여 인과 염소기의 시너지 효과에 의해 난연성을 더욱 향상시키는데 그 연구목적을 두었다. 합성은 tetramethylene bis (orthophosphate) 중간생성물(TMBO)과 neohexanediol trichlorobenfoate 중간생성물(TBA-adduct)인 이들 2종류 중간생성물과 1,4-butanediol 및 adipic acid의 4종류 단량체를 축합중합을 수행하여 4원공중합물(TTBA)을 얻은 다음, 합성된 TTBA류와 hexamethylene diisocyanate(HDI)-trimer인 경화제를 상온경화시켜 2성분계 PU 난연도료(TTBA-10C/ HDI-trimer=TTHD-10C, TTBA-20C/HDI-trimer=TTHD-20C, TTBA-30C/HDI-trimer=TTHD-30C)를 제조하였다. 제조된 TTHD류의 난연도료로서 도막시편을 제작하여 도막물성 측정용 시료로 사용하였다. 도막물성 측정 결과, 전반적으로 인 단독 함유보다 인과 염소를 공유한 쪽의 도막물성이 저하되는 경향을 나타내었다. 또한 난연성 시험으로서 수직법과 수평법의 연소성 시험법 및 $45^{\circ}$ Meckel burner법을 선정하여 난연성을 알아본 결과, 인 단독 함유보다 인과 염소를 공유한 TTHD류 쪽의 난연성이 더 좋게 나타난 것으로 보아 인과 염소에 의한 난연 시너지 효과가 일부 일어남을 인지할 수 있었다.

Keywords

References

  1. M. Okoshi and H. Nishizawa, Fire and Materials, 28, 423 (2004) https://doi.org/10.1002/fam.842
  2. J. Qu and H. Chen, Xiandai Huagong, 23, 22 (2003)
  3. L. Huang, J. Chen, M. Huang, L. Yan, S. Chen, and W. Zhou, Tuliao Gongye, 31, 7 (2001)
  4. R. R. Roesler and K. M. Henderson, U. S. Patent 137,322A1 (2005)
  5. J. E. Dewhurst, A. S. Drayton-Elder, X. Gao, T. M. Santosusso, C. F. Tien, and T. L. Wickmann, Polym. Mater. Sci. Eng., 81, 195 (1999)
  6. J. Wang and Y. Chen, J. Fire Science, 23, 55 (2005) https://doi.org/10.1177/0734904105044266
  7. S. V. Levchik and E. D. Weil, Polym. Int., 53, 1585 (2004) https://doi.org/10.1002/pi.1314
  8. C. X. Li, Y. C. Zhang, and Q. Shao, Jingxi Huagong, 22, 66 (2005)
  9. D. A. Ward, Brit. UK Patent 2,411,212A1 (2005)
  10. H. S. Park, C. H. Park, J. P. Wu, and S. K. Kim, J. Coat. Technol., 69, 41 (1997) https://doi.org/10.1007/BF02720169
  11. H. S. Park, K. J. Ha, J. H. Keun, and T. O. Kim, J. Appl. Sci., 70, 913 (1998) https://doi.org/10.1002/(SICI)1097-4628(19981031)70:5<913::AID-APP11>3.0.CO;2-U
  12. H. S. Park, S. Y. Kwon, K. J. Seo, W. B. Im, J. P. Wu, and S. K. Kim, J. Coat. Technol., 71, 59 (1999)
  13. H. S. Park, D. W. Kim, K. H. Hwang, B. S. Yoon, J. P. Wu, J. W. Park, H. S. Hahm, and W. B. Im, J. Appl. Polym. Sci., 80, 2316 (2001) https://doi.org/10.1002/app.1337
  14. P. I. Kordomenos, K. C. Frisch, H. X. Xiao, and N. Sabbah, J. Coat. Technol., 57, 23 (1985)
  15. R. Sjerps, PCT Int. Appl., WO 060000A1 (2003)
  16. V. V. Bogdanova, Seriya Ai Seriya B, 43, 746 (2001)
  17. P. I. Kordomenos, K. C. Frisch, H. X. Xiao, and N. Sabbah, J. Coat. Technol., 57, 23 (1985)
  18. W. L. F. Armarego and D. D. Perrrin, Purification of Laboratory Chemicals, 4th ed., Reed Educational and Professional Pub. Ltd., Oxford, 1996
  19. H. S. Park, J. Kor. Ind. Eng. Chem., 3, 670 (1992)
  20. H. J. Yoo and H. J. Lee, J. Kor. Fibber Soc., 34, 452 (1997)
  21. G. Rocchini, Mater. Corros., 50, 527 (1999) https://doi.org/10.1002/(SICI)1521-4176(199909)50:9<527::AID-MACO527>3.0.CO;2-H
  22. J. D. Zech and E. C. Ford, Jr., U. S. Patent 3,309,427 (1967)
  23. K. J. Seo, 'Preparation and Characterization of Polyurethane Flame Retardant Coatings Using Pyrophosphoric-Containing Modified Polyester/TDI - Adduct', M. S. Dissertation Myongji Univ., Yongin, Korea (1999)
  24. M. Vayer, C. Serre, N. Bovard, C. Sinturel, and Erre, J. Mater. Sci., 37, 2043 (2002) https://doi.org/10.1023/A:1015263618720
  25. H. J. Lanson, Encyclopedia of Polymer Science and Engineering 2nd ed., John Wiley & Sons, Inc., New York, Vol. 1, p 656 (1985)
  26. A. H. Arkin and B. Hazer, Biomacromolecules, 3, 1327 (2002) https://doi.org/10.1021/bm020079v
  27. Y. Z. Wang, X. T. Chen, and X. D. Tang, J. Appl. Polym. Sci., 86, 1278 (2002) https://doi.org/10.1002/app.11138
  28. P. A. Atkinson, P. J. Haines, and G. A. Skinner, Polym. Degrad. Stabil., 71, 351 (2001) https://doi.org/10.1016/S0141-3910(00)00184-1
  29. A. Ballistreri, G. Montaudo, C. Pugliri, E. Scamporrino, and D. Vitalini, J. Appl. Polym. Sci., 28, 1743 (1983) https://doi.org/10.1002/app.1983.070280517
  30. J. Green, 6th Annual BCC Conference on Flame Retardancy, Recent Advances in Flame Retardancy of Polymeric Materials Stanford, CT, 1995