Synthesis of High Functionalized Anion Exchange Fibers Using Hybrid Polyolefine by $\gamma-Ray$ Mutual Radiation

방사선 동시조사법을 이용한 고관능성 Hybrid Polyolefine 음이온교환섬유의 합성

  • Cho In-Hee (Department of Chemical Engineering, College of Engineering, Chungnam National University) ;
  • Kwak Noh-Seok (Department of Chemical Engineering, College of Engineering, Chungnam National University) ;
  • Kang Phil-Hyun (Korea Atomic Energy Research Institute) ;
  • Nho Young-Chang (Korea Atomic Energy Research Institute) ;
  • Hwang Taek-Sung (Department of Chemical Engineering, College of Engineering, Chungnam National University)
  • 조인희 (충남대학교 공과대학 화학공학과) ;
  • 곽노석 (충남대학교 공과대학 화학공학과) ;
  • 강필현 (한국원자력연구소 방사선응용연구팀) ;
  • 노영창 (한국원자력연구소 방사선응용연구팀) ;
  • 황택성 (충남대학교 공과대학 화학공학과)
  • Published : 2006.05.01

Abstract

Ion exchange fibers, high functionalized onto hybrid polyolefine fiber's surface, were synthesized by $\gamma-ray$ mutual radiation. Degree of grafting (DG) of copolymer increased with increasing GMA monomer concentration and the maximum rate of DG was 355% at 50 GMA. The graft reaction occurred in polar solvent and DG was 190% maximum value in $1.0\times10^{-3}$ Mohr's salt and 0.1 M sulfuric acid, respectively. The amination for graft copolymers varied depending on amine reagents, and the reactivity for copolymers was highest for methylamine, and that of triethylamine lowest. It was shown that water uptake and ion exchange capacities increased with increase in the rate of amination while surface area decreased rapidly as proceeding for graft reaction and amination.

방사선 동시조사에 의해 폴리올레핀 복합 섬유 표면에 고관능성 아민화 이온교환섬유를 합성하였다. 총 조사선량이 증가할수록 그래프트율도 증가하였으며 GMA 농도 50%에서 그래프트율은 최대 365%로 최대 값을 나타내었다. 또한 그래프트 반응은 극성용매에서 일어나며 Mohr's salt, 황산의 함량 $1.0\times10^{-3}M$, 0.1 M에서 그래프트율은 최대 190% 이었다. 아민화 반응은 아민화제의 종류에 따라 각기 다르게 나타났으며 메틸아민의 경우 반응성이 가장 좋았으며 트리에틸아민의 반응성이 가장 낮게 나타났다. 이온교환섬유의 함수율과 이온 교환용량은 아민화율이 증가할수록 높게 나타났으며 비표면적은 그래프트 반응과 아민화 반응이 진행됨에 따라 급격히 감소하는 경향을 보였다.

Keywords

References

  1. J. Chen, L. Yang, M. Wu, Q. Xi, S. He, Y. Li, and Y. C. Nho, Radi. Phys. and Chem., 59, 313 (2000) https://doi.org/10.1016/S0969-806X(00)00274-7
  2. El-Sayed A. Hegazy, H. Kamal, N. Maziad, and A. M. Dessouki, Nucl. Inst. & Methods in Phy. Resea. B, 151, 386 (1999) https://doi.org/10.1016/S0168-583X(99)00125-1
  3. T. Kawai, K. Saito, K. Sugita, T. Kawakami, J. Kanno, A. Katakai, N. Seko, and T. Sugo, Radiat. Phys. Chem., 59, 405 (2000) https://doi.org/10.1016/S0969-806X(00)00298-X
  4. S. H. Choi and Y. C. Nho, Radiat. Phys. Chem., 57, 187 (2000) https://doi.org/10.1016/S0969-806X(99)00348-5
  5. S. H. Choi and Y. C. Nho, Radiat. Phys. Chern, 58, 157 (2000) https://doi.org/10.1016/S0969-806X(99)00367-9
  6. A. C. Patel, R. B. Brahmbhatt, P. V. C. Rao, K. V. Rao, and S. Devi, Eur. Polym. J., 36, 2477 (2000) https://doi.org/10.1016/S0014-3057(00)00031-8
  7. L. Asteimer, H. J. Schenk, E. G. Witte, and K. Schwochau, Sep. Sci & Tech., 18, 4 (1983)
  8. S. Takanobu, Y. Toshihiko, S. Hiroyuki, and H. Kunio, Korea Patent 10-0363339 (1996)
  9. J. S. Park and Y. C. Nho, Polymer(Korea), 22, 47 (1998)
  10. N., Kabay, A. Katakai, and T. Sugo, Rediat. Phys. Chem., 46, 883 (1995)
  11. W. C. Fernelius, L. P. Hammett, and H. H. Williams, Ion Exchange, McGraw- Hill, p. 60 (1962)
  12. W. Yang and B. Ranby, Eur. Polym. J., 35, 165 (1996)
  13. J. S. Park and Y. C. Nho, Polymer, 21, 325 (1997)
  14. T. S. Hwang, J. H. Lee, and M. J. Lee, Polymer(Korea), 25, 451 (2001)
  15. C. J. Pouchert, The Aldrich Library of Infrared Spectra, Aldrich Chemical Co., Milwaukee, 1975