References
- Adam G, Petzold U (1994) Brassinosteroids: a new phytohormone group. Naturwissenchaften 81:210-217
- Arima M, Yokota T, Takahashi N (1984) Identification and quantification of brassinolide-related steroids in the insect gall and healthy tissue of the chesnut plant. Phytochemistry 23: 1587 -1592 https://doi.org/10.1016/S0031-9422(00)83445-7
- Azpiroz R, Wu Y, LoCascio JC, Feldmann KA (1998) An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation. Plant Cell 10:219-230 https://doi.org/10.1105/tpc.10.2.219
- Bishop GJ, Nomura T, Yokota T, Harrison K, Noguchi T, Fujioka S, Takatsuto S, Jones JDG, Kamiya Y (1999) The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis. Proc Natl Acad Sci USA 96:1761-1776
- Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of utilizing the principle of protein-dye binding. Anal Biochem 72:248-254 https://doi.org/10.1016/0003-2697(76)90527-3
- Choe S, Dilkes BP, Fujioka S, Takatsuto S, Sakurai A, Feldmann KA (1998) The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22 a -hydroxylation steps in brassinosteroid biosynthesis. Plant Cell 10:231-243 https://doi.org/10.1105/tpc.10.2.231
- Choi YH, Fujioka S, Nomura T, Harada A, Yokota T, Takatsuto S, Sakurai A (1997) An alternative brassinolide biosynthetic pathway via late C-6 oxidation. Phytochemistry 44:609-613 https://doi.org/10.1016/S0031-9422(96)00572-9
- Chory J, Catterjee M, Cook R (1996) From seed germination to flowering, light controls plant development via the pigment phytochrome. Proc Natl Acsd Sci USA 93; 12066-12071
- Clouse SD, Feldmann KA (1999) Molecular genetics of brassinosteroids action. In: Sakurai A, Yokota T, Clouse SD, eds, Brassinosteroids. Springer-Verlag, Tokyo, pp 163-190
- Fujioka S (1999) Natural occurrence of brassinosteroids in the plant kingdom. In: Sakurai A, Yokota T, Clouse SD, eds, Brassinosteroids. Springer-Verlag, Tokyo, pp 21-45
- Fujioka S, Li J, Choi YH, Seto H, Takatsuto S, Noguchi T, Watanabe T, Kuriyama H, Yokota T, Chory J, Sakurai A (1997) The Arabidopsis deetiolated2 mutant is blocked early in brassinosteroid biosynthesis. Plant Cell 9: 1951-1962 https://doi.org/10.1105/tpc.9.11.1951
- Fujioka S, Sakurai, A (1997) Biosynthesis and metabolism of brassinosteroids. Physiol Plant 100: 710-715 https://doi.org/10.1111/j.1399-3054.1997.tb03078.x
- Grove MD, Spencer GF, Rohwedder WK, Mandava N, Worley JF, Warthen JD Jr, Steffen GL, Flippen-Anderson JL, Cook JC Jr (1979) Brassinolide, a plant growth promoting steroid isolated from Brassica napus pollen. Nature 281 :216-217 https://doi.org/10.1038/281216a0
- Kang MW, Kim YS, Kim SK (2003) Identification and biosynthetic pathway of brassinosteroids in seedling shoots of Zea mays L.. Korean journal of Plant Biotechnology 30:411-419 https://doi.org/10.5010/JPB.2003.30.4.411
- Kim SK, Chang SC, Lee EJ, Chung WS, Kim YS, Hwang S, Lee JS (2000) Involvement of brassinosteroids in the gravitropic response of primary root of maize. Plant Physiol 123:997-1004 https://doi.org/10.1104/pp.123.3.997
- Kim SK (1991) Natural occurrences of brassinosteroids. In: Cutler HG, Yokota T, Adam G, eds, Brassinosteroids: Chemistry, Bioactivity, and Application, ACS Symposium Series 474. Amer Chem Soc, Washington DC, pp 26-35
- Kim TW, Chang SC, Choo J, Watanabe T, Takatsuto S, Yokota T, Lee JS, Kim SY, Kim SK (2000a) Brassinolide and [26, 28-2H6]brassinolide are differently demethylated by loss of C-26 and C-28, respectively, in Marchantia polymorpha. Plant Cell Physiol 42: 1171-1174 https://doi.org/10.1093/pcp/pce004
- Kim TW, Chang SC, Lee JS, Takatsuto S. Yokota T, Kim SK (2004b) Novel biosynthetic pathway of castasterone from cholesterol in tomato. Plant Physiology 135: 1231-1242 https://doi.org/10.1104/pp.104.043588
- Kim TW, Chung WS, Kim YS, Kim SK (2004b) 6-Deoxocastasterone and its biosynthetic precursors from primary roots of maize. Bull Korean Chem Soc 25: 1099-1102 https://doi.org/10.5012/bkcs.2004.25.7.1099
- Kim YS, Kim TW, Kim SK (2003) Conversion of 6-deoxocastasterone to brassinolide in a liverwort, Marchantia polymorpha. Bull Korean Chem Soc 24: 1385-1388 https://doi.org/10.5012/bkcs.2003.24.9.1385
- Marquardt V, Adam G (1991) Recent advances in brassinosteroid research. In: Boerner H, Martin D, Sjut V, eds, chemistry of Plant Protection, Vol 7: Herbicide Resistance-Brassinosteroids, Gibberellins, Plant Growth Regulators. Springer-Verlag, Berlin, pp 103-139
- Mathur J, Molnar G, Fujioka S, Takatsuto S, Sakurai A, Yokota T, Adam G, Voigt B, Nagy F, Maas C, et al. (1998) Transcription of the Arabidopsis CPD gene, encoding a steroidogenic cytochrome P450, is negatively controlled by brassinosteroids. Plant J 14:593-602 https://doi.org/10.1046/j.1365-313X.1998.00158.x
- Meudt WJ (1987) Chemical and biological aspects of brassinolide. In: Fuller G, Nes WD, eds, Ecology and Metabolism of Plant Lipids. ACS Symp Ser 325, Amer Chem Soc, Washington DC, pp 53-75
- Nakajima N, Fujioka S, Tanaka T, Takatsuto S, Yoshida S (2002) Biosynthesis of cholesterol in higher plants. Phytochemistry 60:275-279 https://doi.org/10.1016/S0031-9422(02)00113-9
- Neff MM, Nguyen SM, Malancharuvil EJ, Fujioka S, Noguchi T, Sete H, Tsubuki M, Honda T, Takatsuto S, Yoshida S, Chory J (1999) BAS1: a gene regulation brassinosteroid levels and light responsiveness in Arabidopsis. Proc Natl Acad Sci USA 96:15316-15323
- Noguchi T, Fujioka S, Choe S, Takatsuto S, Tax FE, Yoshida S, Feldmann KA (2000) Biosynthetic pathways of brassinolide in Arabidopsis. Plant Physiol 124:201-209 https://doi.org/10.1104/pp.124.1.201
- Nomura T, Nakayama M, Reid JB, Takeuchi Y, Yokota T (1997) Blockage of brassinosteroid biosynthesis and sensitivity causes dwarfism in garden pea. Plant Physiol 113:31-37 https://doi.org/10.1104/pp.113.1.31
- Sakurai A, Fujioka S (1993) The current status of physiology and biochemistry of brassinosteroids. Plant Growth Regul 13:147-159 https://doi.org/10.1007/BF00024257
- Sakurai A, Fujioka S (1997) Studies on biosynthesis of brassinosteroids. Biosci Biotec Biochem 61:757-762 https://doi.org/10.1271/bbb.61.757
- Sasse JM (1991) Brassinosteroids-induced elongation. In: Culter HG, Yokota T, Adam G, eds, Brassinosteroids; Chemistry, Bioactivity and Application, ACS Symp Ser 474, Amer Chem Soc, Washington DC, pp 255-264
- Sekimoto H, Hoshi M, Nomura T, Yokota T (1997) Zinc deficiency affects the levels of endogenous gibberellins in Zea mays L. Plant Cell Physiol 38: 1087 -1090 https://doi.org/10.1093/oxfordjournals.pcp.a029276
- Suzuki Y, Yamaguchi I, Yokota T, Takahashi N (1986) Identification of castasterone, typhasterol and teasterone from the pollen of Zea mays. Agric Biol Chem 50: 3133-3188 https://doi.org/10.1271/bbb1961.50.3133
- Suzuki H, Fujioka S, Takatsuto S, Yokota T, Murofushi N, Sakurai A (1993) Biosynthesis of brassinolide from castasterone in cultured cells of Catharanthus roseus. Plant Growth Regul 12: 10 1-106 https://doi.org/10.1007/BF00193241
- Suzuki H, Inoue T, fujioka S, Saito T, Takatsuto S, Yokota T, Murofushi N, Yanagisawa T, Sakurai A (1995) Conversion of 24-methylcholesterol to 6-oxo-24-methylcholestanol, a putative intermediate of the biosynthesis of brassinosteroids, in cultured cells of Catharanthus rose us. Phytochemistry 40: 1391-1397 https://doi.org/10.1016/0031-9422(95)00579-V
- Szekeres M, Nemeth K, koncz-Kalman Z, Mathur J, Kauschmann A, Altmann T, Redei GP, Nagy F, Schell J, Koncz C (1996) Brassinosteroids rescue the deficiency of CYP 90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85: 1 71-182 https://doi.org/10.1016/S0092-8674(00)81094-6
- Takahashi T, Gasch A, Nishizawa N, Chua NH (1995) The DIMINUTO gene of Arabidopsis is involved in regulating cell elongation. Genes Dev 9:97-107 https://doi.org/10.1101/gad.9.1.97
- Wang ZY, Seto H, Fujioka S, Yoshida S, Chory J (2001) BRII is a critical component of a plasma-membrane receptor for plant steroids. Nature 410:380-383 https://doi.org/10.1038/35066597
- Winter J, Schneider B, Strack D, Adam G (1997) Role of a cytochrome P450-dependent monooxygenase in the hydroxylation of 24-epi-brassinolide. Phytochemistry 45:233-237 https://doi.org/10.1016/S0031-9422(96)00827-8
- Yamamoto R, Fujioka S, Demura T, Takatsuto S, Yoshida S, Fukada H (2001) Brassinosteroid levels increase drastically prior to mophogenesis of tracheary elements. Plant Physiol 125:556-563 https://doi.org/10.1104/pp.125.2.556
- Yokota T (1997) The structure, biosynthesis and function of brassinosteroids. Elsevier Trends Jurnals 2:137-143
- Yokota T (1999) Brassinosteroids. In: Hooykaas MA, Hall MA, Libbenga KR (Eds), Biochemistry and Molecular Biology of Plant Hormones. Elsevier Science, Amsterdam pp. 277-293
- Yokota T, Sato T, Takeuchi Y, Nomura T, Uno K, Watanabe T, Takatsuto S (2001) Roots and shoots of tomato produce 6-deoxo-28-norcathasterone, 6-deoxo-28-nortyphasterol and 6-deoxo-28-norcastasterone, possible precursors of 28-norcastasterone. Phytochemistry 58:233-238 https://doi.org/10.1016/S0031-9422(01)00237-0
- Yokota T, Watanabe S, Ogino Y, Yamaguchi I, Takahashi N (1990) Radioimmunoassay for brassinosteroids and its use for comparative analysis of brassinosteroids in stems and seeds of Phaseolus vulgaris. J Plant Growth Regul 9:151-159 https://doi.org/10.1007/BF02041955