CELL-MATRIX ADHESIONS OF SOFT TISSUE CELLS AROUND DENTAL IMPLANTS

임플랜트 주위 연조직세포의 세포-기질 접착

  • Lee Suk-Won (Department of Dentistry, College of Medicine, Catholic University, Saint Vincent's Hospital) ;
  • Rhyu In-Chul (Department of Prosthodontics, College of Dentistry, Yonsei University, Young-dong Severance Hospital) ;
  • Han Chong-Hyun (Department of Periodontology, College of Dentistry, Seoul National University) ;
  • Lee Jai-Bong (Department of Prosthodontics, College College of Dentistry, Seoul National University)
  • 이석원 (가톨릭대학교 의과대학 치과학교실, 성빈센트병원 치과) ;
  • 류인철 (서울대학교 치과대학 치주과학교실) ;
  • 한종현 (연세대학교 치과대학 보철학교실, 영동세브란스병원 보철과) ;
  • 이재봉 (서울대학교 치과대학 보철학교실)
  • Published : 2006.02.01

Abstract

The importance of soft tissue response to implant abutments has become one of the major issues in current implant dentistry. To date, numerous studies have emphasized on maintaining connective tissue barriers in quantity, as well as in quality fir the long term success of dental implants. The cells mainly consisting the soft tissue around dental implants are fibroblasts and epithelial cells. The mechanism of the fibroblasts adhesions to certain substrata can be explained by the 'focal adhesion' theory. On the other hand, epithelial cells adhere tn the substratum via hemidesmosomes. The typical integrin-mediated adhesions of cells to certain matrix are called 'cell-matrix adhsions'. The focal adhesion complex of fibroblasts, in relation to the cell-matrix adhsions, consists of the extracellular matrix(ECM) such as fibronectin, the transmembrane proteins such as integrins, the intracellular cytoplasmic proteins such as vinculin, talin, and more, and the cytoskeletal structures such as filamentous actin and microtubules. The mechanosensory function of integrins and focal adhesion complexes are considered to play a major role in the cells adhesion, migration, proliferation, differentiation, division, and even apoptosis. The '3-D matrix adhesions' defined by Cukierman et al. makes a promising future for the verification of the actual process of the cell-matrix adhesions in vivo and can be applied to the field of implant dentistry in relation to obtaining strong soft tissue attachment to the implant abutments.

Keywords

References

  1. Jockush BM, Bubeck P, Giehl K. Kroemker M, Moschner J, Rothkegel M. The molecular architecture of focal adhesions. Ann Rev Cell Dev Biol 1995:11:379-369 https://doi.org/10.1146/annurev.cb.11.110195.002115
  2. Jones J, Asmuth J, Baker SE, Langhofer M, Roth SI. Hopkinson SB. Hemidesmosomes: extracellular matrix/intermediate filament connectors. Exp Cell Res 1994: 213:1-11 https://doi.org/10.1006/excr.1994.1166
  3. Borradori L, Sonnenberg A. Hemidesmosomes: role in adhesion, signaling and human diseases. Curr Opin Cell Biol 1996; 8:647-656 https://doi.org/10.1016/S0955-0674(96)80106-2
  4. Jansen JA, den Braber ET, Walboomers XF, de Ruijter JE. Soft tissue and epithelial models. Adv Dent Res. 1999; 13: 57-66 https://doi.org/10.1177/08959374990130011601
  5. Aumailley M, Gayraud B. Structure and biological activity of the extracellular matrix. J Mol Med 1998:76:253-265 https://doi.org/10.1007/s001090050215
  6. Aumailley M, Smyth N. The role of laminins in basement membrane function. J Anat 1998:193:1-21 https://doi.org/10.1046/j.1469-7580.1998.19310001.x
  7. Colognato H, Yurchenco PD. Form and function: the laminin family of heterotrimers. Dev Dyn 2000:218:213-234 https://doi.org/10.1002/(SICI)1097-0177(200006)218:2<213::AID-DVDY1>3.0.CO;2-R
  8. Singer II, Scott S, Kawaka DW, Kazazis DM, Gailit J, Ruoslahti E. Cell surface distribution of fibronectin and vitronectin receptors depends on substrate composition and extra cellular matrix accumulation. J Cell Biol 1988:106:2171-2182 https://doi.org/10.1083/jcb.106.6.2171
  9. Steel JG. Johnson G. Underwwod PA. Role of serum vitronectin and fibronectin in adhesion of fibroblasts following seeding onto tissue culture polystyrene. J Biomed Mat Res 1992:26:861-884 https://doi.org/10.1002/jbm.820260704
  10. Nanci A. McKee MD. Ialzal S. Sakkal S. Ultrastructural and immunocytochemical analysis of the tissue response to metal implants in the rat tibiae. In: Davidovitch I. Mah J(eds). Biological Mechanisms of Tooth eruption. Resorption and Replacement by Implants. Boston: Harvard Society for the Advancement of Orthodontics. 1998 :487-500
  11. Ayukama Y. Takeshita T. An immuneelectron microscopic localization of noncollagenous bone proteins(osteocalcin and osteopontin) at the bone-titanium interface of root tibiae. J Biomed Mat Res 1998:41: 111-119 https://doi.org/10.1002/(SICI)1097-4636(199807)41:1<111::AID-JBM14>3.0.CO;2-Q
  12. Bosman FT. Stamenkovic I. Functional structure and composition of the extracellular matrix. J Pathol 2003:200:423-428 https://doi.org/10.1002/path.1437
  13. Stamenkovic I. Extracellular matrix remodeling: the role of matrix metalloproteinase. J Pathol 2003:200:448-464 https://doi.org/10.1002/path.1400
  14. Pankov R. Yamada KM. Fibronectin at a glance. J Cell Science 2002: 115: 3861-3863 https://doi.org/10.1242/jcs.00059
  15. Hersel U. Dahmen C. Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 2003:24:4385-44159 https://doi.org/10.1016/S0142-9612(03)00343-0
  16. Zamir E. Geiger B. Molecular complexity and dynamics of cell-matrix adhesions. J Cell Science 2001: 114: 3583-3590
  17. Hynes RO. Integrin: versability, modulation. and signaling in cell adhesions. Cell 1992:69:11-25 https://doi.org/10.1016/0092-8674(92)90115-S
  18. Schwartz MA, Schaller MD, Ginsderg MH. Integrins: emerging paradigms of signal transduction. Ann Rev Cell Dev Biol 1995: 11: 549-599 https://doi.org/10.1146/annurev.cb.11.110195.003001
  19. Damsky CH, Werb Z. Signal transduction by integrin receptors for extracellular matrix: cooperative processing of extracellular information Curr Opin Cell Biol 1992:4: 7.72-781 https://doi.org/10.1016/0955-0674(92)90100-Q
  20. Damen EH Yamada KM. Fibronectin, integrins, and growth control. J Cell Physiol 2001:189:1-13 https://doi.org/10.1002/jcp.1137
  21. Giancotti FG, Ruoslahti E. Integrin signaling. Science 1999: 285: 1028-1032 https://doi.org/10.1126/science.285.5430.1028
  22. Ingber DE, Folkman J. Mechanochemical switching between growth and differentiation during fibroblast growth factorstimulated angiogenesis in vitro: role of extracellular matrix. J cell Biol 1989:109:317-330 https://doi.org/10.1083/jcb.109.1.317
  23. Schwartz MA. Assosian RK. Integrins and cell proliferation: regulation of cyclindependent kinase via cytoplasmic signaling pathways. J cell Sci 2001: 114:2553-2560
  24. Myamoto S, Teramoto H, Coso OA, Gutkind JS. Bubelo PD. Integrin functions: molecular hierarchies of cytoskeletal and signaling molecules. J cell Biol 1995:131:791-805 https://doi.org/10.1083/jcb.131.3.791
  25. Cukierman E. Pankov R, Steven DR, Yamada KM. Taking cell-matrix adhesions to the third dimension. Science 2001 :294: 1708-1712 https://doi.org/10.1126/science.1064829
  26. Geiger B, Bershadsky A, Pankov R, yamada KM. Transmembrane crosstalk between the extracellular matrix-cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2001: 2: 793-805 https://doi.org/10.1038/35099066
  27. Pankov R, Cukierman E. Katz BI. Matsumoto K. Lin DC. Integrin dynamics and matrix assembly: tensin-dependent translocation of alpha5beta1 integrins promotes early fibronectin fibrillogenesis. J cell Biol 2000; 148: 1075-1090 https://doi.org/10.1083/jcb.148.5.1075
  28. Zamir E. Katz BI. Aota S. Yamada KM. Geiger B. Kam I. Molecular diversity of cellmatrix adhesions. J cell Sci 1999; 112: 1655-1669
  29. Zamir E. Katz M. Posen Y. Erez N. Yamada KM. Dynamic and segregation of cell-matrix adhesions in cultured fibroblasts. Nat Cell Biol 2000;2:191-196 https://doi.org/10.1038/35008607
  30. Vogel V. Baneyx G. The tissue engineering puzzle: A molecular perspective. Annu Rev Biomed Eng. 2003;5:441-463 https://doi.org/10.1146/annurev.bioeng.5.040202.121615
  31. Gillespie PG. Walker RG. Molecular basis of mechanosensory transduction. Nature 2001 :413: 194-196 https://doi.org/10.1038/35093011
  32. Hamill OP. Martinac B. Molecular basis of mechanotransduction in living cells. Physiol Rev 2001 ;81 :685-740 https://doi.org/10.1152/physrev.2001.81.2.685
  33. Geiger B. Bershadsky A. Assembly and mechanosensory function of focal contacts. Curr Opin Mol Cell Biol 2001: 13: 584-592 https://doi.org/10.1016/S0955-0674(00)00255-6
  34. Katsumi A. Orr AW. Tzimas E. Schwartz MA. Integrins in mechanotransduction. J Biol Chem 2004;279:12001-12004 https://doi.org/10.1074/jbc.R300038200
  35. Davies PF. Flow-mediated endothelial mechanotransduction. Physiol Rev 1995; 75:519-560 https://doi.org/10.1152/physrev.1995.75.3.519
  36. Epstein ND. Davis JS. Sensing stretch is fundamental. Cell 2003; 112: 147-150 https://doi.org/10.1016/S0092-8674(03)00037-0
  37. Ingber DE. Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ Res 2002;91:877-887 https://doi.org/10.1161/01.RES.0000039537.73816.E5
  38. Pelham RJ. Wang YL. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci USA 1997;94:13661-13665
  39. Harris AK, Wild P, Stopak D. Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 1980:208: 177-179 https://doi.org/10.1126/science.6987736
  40. Hall A. Rho GTPases and the actin cytoskeleton. 1998: 279: 509-514 https://doi.org/10.1126/science.279.5350.509
  41. Horwitz AR, Parsons JT. Cell migrationmovin' on. Science 1999:286: 1102-1103 https://doi.org/10.1126/science.286.5442.1102
  42. Zamir E, Geiger B. Molecular complexity and dynamics of cell-matrix adhesions. J Cell Sci 2001: 114: 3583-3590
  43. Kroemker M, Rudiger AH, Jockush BM, Rudiger M. Intramolecular interactions in vinculin control $\alpha$-actinin binding to the vinculin head. FEBS lett. 1994:355:259-262 https://doi.org/10.1016/0014-5793(94)01216-4
  44. Johnson RP, Craig SW. An intramolecular association between the head and tail domains of vinculin modulates talin binding. K Biol Chem 1994:269:12611-12619
  45. Gilmore AP, Burridge K. Regulation of vinculin binding to talin and actin by phosphatidyHnositol-4-5-bisphosphate. Nature 1996:381:531-535 https://doi.org/10.1038/381531a0
  46. Weeks J, Barry ST, Critchley DR. Acidic phospholipids inhibit the intramolecular association between the N- and C- terminal regions of vinculin, exposing actin-binding and protein kinase C phosphorylation sites. Biochem 1996:314:827-832 https://doi.org/10.1042/bj3140827
  47. Turner CE. Paxillin interactions. J Cell Sci 2000:113:4139-4140
  48. Burridge K. Chrzanowka-Wodnicka M. Focal adhesions, contractility, and signaling. Ann Rev Cell Dev Biol 1996:12:463-518 https://doi.org/10.1146/annurev.cellbio.12.1.463
  49. Burridge K, Fath K, Kelly T. Nackolls G, Turner C. Focal Adhesions: Transmembrane Junctions Between the Extracellular Matrix and the Cytoskeleton. Ann Rev Cell Dev Biol 1988:4:487-525 https://doi.org/10.1146/annurev.cb.04.110188.002415
  50. Craig SW, Johnson RP. Assembly of focal adhesions: progress, paradigms, and portents. Curr Opin Cell Biol 1996:8:74-85 https://doi.org/10.1016/S0955-0674(96)80051-2
  51. Wang HB, Dembo M. Hanks SK, Wang Y. Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proc Natl Acad Sci USA 2001: 98: 11295-11300
  52. Ilic D, Furnta Y, Kanazawa S, Takeda N, Sobuek, Nakasuji N, Momura S, Fujimoto J, Okada M, Yamamoto T. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 1995:377: 539-544 https://doi.org/10.1038/377539a0
  53. Sieg DJ, Hauck CR, Schlaepfer DD. Required role of focal adhesion kinase(FAK) for integrin-stimulated cell migration. J Cell Sci 1999: 112: 2677-2691
  54. Klinghoffer RA. Sachsenmajer C, Cooper JA, Soriano P. Src family kinases are required for integrin but not PDGFR signal transduction. EMBO J 1999: 18: 2459-2471 https://doi.org/10.1093/emboj/18.9.2459
  55. Webb DJ, Parsons KT, Horwitz AF. Adhesion assembly, disassembly and turnover in migrating cells-over and over and over again. Nat Cell Biol 2002:4:E97-100 https://doi.org/10.1038/ncb0402-e97
  56. Parsons JT. Focal adhesion kinase: the first ten years. J Cell Sci 2003: 15: 1409-1416
  57. Peppas NA. Langer R. Challenges in biomaterials. Science 1994:263: 1715-1720 https://doi.org/10.1126/science.8134835
  58. Stossel TP. On the crawling animals. Science 1993: 260: 1086-1094 https://doi.org/10.1126/science.8493552
  59. Lauffenburger DA. Horwitz AF. Cell migration: a physically integrated molecular process. Cell 1996:84:359-369 https://doi.org/10.1016/S0092-8674(00)81280-5
  60. Mitchinson TJ, Cramer LP. Actin-based cell motility and cell locomotion. Cell 1996: 84:371-379 https://doi.org/10.1016/S0092-8674(00)81281-7
  61. Hollenbeck P. Microtubules get the signal. Curr Biol 2001: 16: 820-823
  62. Yamada KM. Pankov R. Cukierman E. Dimensions and dynamics in integrin function. Braz J Med Biol Res 2003:36:959-966
  63. Grinnell F. Fibroblast biology in three-dimensional collagen matrices. Trends Cell Biol 2003: 13:264-269 https://doi.org/10.1016/S0962-8924(03)00057-6
  64. Wood W. Martin P. Structures in focusfilopodia. Int J Biochem & Cell Biol 2002:34:726-730 https://doi.org/10.1016/S1357-2725(01)00172-8
  65. Lee SW. Rhyu IC. Kim KH. Han CH. Heo SJ. Cell-matrix interactions of human gingival epithelial cells and fibroblasts with microgrooved titanum alloy substrata : a scanning electron microscopic study. J Kor Acad Oral Maxillofac Impl 2004;8:2-15
  66. Schmidt JW. Piepenhagen PA. Nelson WJ. Modulation of epithelial morphogenesis and cell fate by cell-to-cell signals and regulated cell adhesion. Semin Cell Biol 1993:4: 161-173
  67. Stepp MA. Spurr-Michaud S. Tisdale A, Elwell J. Gibson JK. $\alpha_{6}\beta_{4}$ integrin heterodimer is a component of hemidesmosomes. Proc Natl Acad Sci USA 1990: 87:8970-8974
  68. Jones JCR, Kurpakus MA, Cooper HM. Quaranta V. A function for the integrin $\alpha6\beta4$ in the hemidesmosome. Cell Regul 1991 :2:427-438 https://doi.org/10.1091/mbc.2.6.427
  69. Sonnenberg A, Calafat J. Janssen H. Integrin $\alpha_{6}\beta_{4}$ is located in himidesmosomes. suggesting a major role in epidermal-basement membrane adhesion. J Cell Biol 1991: 113: 907-917 https://doi.org/10.1083/jcb.113.4.907
  70. Kano Y. Katoh K. Masuda M. Fujiwarak. Macromolecular composition of stress fiber-plasma membrane attachment sites in endothelial cells in situ. Circ Res 1996:79:1000-1006 https://doi.org/10.1161/01.RES.79.5.1000
  71. Jones J. Asmuth J. Baker SE. Langhofer M. Roth SI. Hopkinson SB. Hemidesmosomes: extracellular matrix/intermediate filament connectors. Exp Cell Res. 1994;213:1-11 https://doi.org/10.1006/excr.1994.1166
  72. Borradori L. Sonnenberg A. Hemidesmosornes: role in adhesion. signaling and human diseases. Curr Opin Cell Biol. 1996:8:647-65673 https://doi.org/10.1016/S0955-0674(96)80106-2
  73. Jones JCR. Hopkinson SB. Goldfiner LE. Structure and assembly of hemidesmosomes. BioEssays 1998: 20: 488-494 https://doi.org/10.1002/(SICI)1521-1878(199806)20:6<488::AID-BIES7>3.0.CO;2-I
  74. Nievers MG. Schacpveld RQJ. Sonnenberg A. Biology and function of hemidesmosomes. Matrix Biology 1999: 18: 5-17 https://doi.org/10.1016/S0945-053X(98)00003-1
  75. Weaver VM. Lelievre S. Lakins JN. Chrenek MA. Jones JC. Giancotti F. Werb Z. Bissell MJ. Beta4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell 2002: 2:205-216 https://doi.org/10.1016/S1535-6108(02)00125-3