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A Mechanical Model of the End Anchorage Zone of Prestressed
Concrete Members
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Abstract: It is expected that recent development of mechanical models will soon supersede previous empirical methods of detailing. In this
study, a mechanical mode is proposed to analyze the behavior of the anchorage zone of prestressed concrete members. The main characteristics of
the proposed model lies in its rational consideration of material properties such as concrete strength in biaxial stress state and that of local zone
reinforced by spirals. The shear friction strength of concrete surrounding a spiral is also considered. The computational results of the proposed
model as well as the existing Strut-and-Tie model (STM) and nonlinear finite element analysis are compared with experimental results. The results
of the comparison revealed that the proposed model showed better prediction of the failure mode as well as the failure load. Additionally, the
proposed model also explained the three-dimensional failure mechanism very well, while other methods based on two-dimensional analysis could

not do so well.
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1. Introduction

A problem related to the anchorage zone of prestressed concrete
members can be classified as a stress state problem induced by a
concentrated force, so called mechanical D-region problem.1
Since we cannot apply the hypothesis that plan section remains
plane on this local zone near the concen-trated force, it is impossible
to predict the stress accurately based on the engineering beam theory.
The principle of Saint-Venant governs the stress state of the local
zone. Thus, we cannot apply conventional design methods.*’

Conventionally we designed the local zone by empirical rules or
experiments pertaining to individual local zone case by case, not by
mechanically rational methods. Although practical ~ engineers
recognized that simple empirical rules of detailing cannot be
applied to various cases of reinforced detailing pmblems,2 it was
Fritz Leonhardt® who let researchers know that reinforcement
detailing should be determined based on the mechanical principles,
the leading reseacher for active study of reinforcement detailing
design. Ever since Morsh first used a mechanical model for shear
design of a member, engineers have continuously wanted to use a
rational and understandable mechanical model to the plane or
three-dimensional problems. Some researchers in Denmark® and
Swiss’ showed that it is easier to constitute a mechanical model at the
ultimate state of reinforced concrete members because the force flow

Y Kcr member, Dept. of Civil Ergineering, Dong-A University,
Pusan 604-714, Korea. E-mail: whkang@dau.ac.kr

?) University Michigan, MI 48502, USA.

» Dong A University, Pusan 604-714, Korea.

4 You-Shin Corporation Seoul 135-936, Korea.

Copyright (© 2006, Korea Concrete Institute. All rights reserved, including

the making of copies without the written permission from the

copyright proprietors.

at the plastic state is quite simpler than the elastic state.

Their theories are known as limit analyses, which are not used
in general as design rules for the reason that the lower bound
solution does not guarantee the required accuracy and that the
rigid plastic assumption of concrete stress-strain relationship is not
easily satisfied. However, the assumption of simpler stress state
for concrete members at ultimate state is a very attractive idea to
design engineers, who need an intuitional tool for reinforcement
detailing. Plastic properties of concrete are better understood
recently, and the accuracy of the limit analysis model is much
enhanced. As a consequence, some good results based on limit
analysis have been reported. In this study we apply a mechanical
model, which is based on the plasticity theory, to the problem of
predicting the behavior of prestressed concrete members at the end
anchorage zone.

2. Material properties of concrete for building a
mechanical model

2.1 Concrete compressive strength under biaxial
stress state

In the mechanical model, biaxial or tri-axial stress state of
concrete elements is simplified as uni-axial stress state with respect
to the stress distribution of plastic state. However, the strength of
elements should be estimated based on real stress state of the
element, regardless of the reinforcement. Compressive strength of
bi-axial state was extensively studied by Ahmad, Shah® and
Vecchio and Collins’ who proposed a formula for compressive
strength at biaxial stress state. Their formula can be applied to
typical prestresssed concrete members, while the effective strength
of high-strength concrete should be reduced as reported by
Muttoni'” from the results of shear test.
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In this study we use Vecchio and Collins formula to calculate bi-
axial compressive strength of the members, of which the strength at
28 days is lower than 40 MPa. The equation is as follows.

Jo o1y 1)
[ 08+170g
Where,

.= compressive strength of concrete at bi-axial stress state
o = compressive strength of concrete at uni-axial stress state
& = strain in principal direction
When a member is reinforced in one direction, with the
difference in angle between the reinforcement direction and
principal stress direction, the following relationship holds for the
strain of reinforcement and strain of principal direction.

&= &+ (&+0.002)cot’ a, )

Where,

& = principal strain

&= reinforcement strain

a, = angle between reinforcement and principal direction

2.2 Concrete bearing strength under an anchorage
plate

The stress state of concrete under an anchorage plate depends
on friction between the anchorage plate and concrete as well as the
restraining effect of surrounding concrete. Bearing strength of
concrete is not estimated well enough by a theoretical model, in
spite that we can explain the formation of stress wedge by the
plasticity theory. In this study, we adopt a formula for bearing
strength, which depends on bearing area and surrounding concrete
area, based on the test results of Hawkins."?

o Mo
f})earing = 085f ¢ Z (3)
1

Where,

AZ
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A; = possible maximum area of surrounding concrete, of which
the loading center gets the shape of a centroid.
A,=net loading area

2.3 Compressive strength of three-dimensional
stress state confined by spirals

The compressive strength of a concrete cylinder, which is
confined by spirals, increases by the confining degree of spirals.
Transverse stress can be calculated according to the Kanellopoulos’
stress model.”?

a, f.
o =——’”—S (4)
-ZCTC
Where,
o, = 2~As-f'y
s-d.-f,

d,= diameter of spiral

s = space of spirals
Ag= Area of spiral
J,=yield stress of spirals

Richart'* reports that the compressive strength of concrete at
three-axial stress state increases in accordance with the transverse
stress.

Me=-4" o ©)

Thus, we can calculate the average compressive strength of core
concrete as follows.

g2
fr (1-3)
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4 d

Concrete ahead of the spiral end is subject to the same condition
as the concrete under anchor plate. Compressive strength of core
concrete in the spiral can be calculated by Eq. (6), while
compressive strength of concrete ahead of the spiral end can be
calculated by Eq. (3).

2.4 Share of axial compressive force by surrounding
concrete outside confining range of spirals

We imagine the force flow of concrete when spirals are
reinforced under anchorage plate. Although we can explain
inclined cracks and force flow due to the concentrated force of
spirals, we cannot get enough test data for a quantitative strength
evaluation. Thus we use shear friction test results for the analysis.

The shear friction strength formula developed by Nielsen,* which
is based on the Hofeck’s shear friction test data" is shown as
follows.

7=t gang ™

Where,

7= shear strength

y=ratio of concrete plastic strength to uni-axial strength, which

is called the effectiveness factor

¢ = friction angle according to the Coulomb failure criteria

@ = angle between loading and reinforcement direction

For normal concrete, we can substitute y=2/3, ¢ = 37°, then the
equation without reinforcement is reduced to;

r=0.1131", ®

In this study, we assume that a shear friction failure occurs when
the shear stress of core concrete at surface exceeds the estimated
value from Eq. (8).

The friction coefficient of concrete placed monolithically as
specified in ACI code can be regarded that inclined angle of
compressive force is about 35°. Thus, the stress flow is to have an
angle of inclination of 35" in this study.

Since we assume an anchorage zone is subject to a radial
pressure transverse to the member axis as shown in Fig. 1(c), the
strength is determined by surrounding concrete. If we assume
circular cross section inscribed in member section, inclined cracks
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Fig. 1 Failure mechanism and model of the local zone outside the spiral (a) Failure mechanism of surrounding concrete, (b) Model
of failure mechanism surrounding concrete, and (c) Sectional stress of shear friction failure mechanism.

develop at outer concrete while core concrete is not cracked.'
According to the elasticity theory17 we can calculate radial and
circumferential stress at r under radial pressure.

E, -
o - z[cl(wv)—cz 2"} (92)
1-v r
E, 1—
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Conl

g = internal pressure
E_= elastic modulus of concrete

v = Poisson’s ratio of concrete
Other signs are noted within Fig. 2.

Outer concrete is under biaxial stress state, i e. radial compressive
stress expressed by Eq. (9a) and circumferential tensile stress
expressed by Eqg. (9b). Compressive strength of the biaxial stress
state depends on surrounding reinforcement out of the spiral, which
can be determined by Eq. (1) in consideration of the strain on the
reinforcements. Since circumferential tensile stress makes cracks
when it exceeds a certain tensile strength, the surrounding

@) [

Fig. 2 Geometry of a disk loaded (cracked) by radial pressure
(a) Side view and (b) Section view.

reinforcements must bear the tensile force after the crack. Thus the
failure mode of surrounding concrete is either compressive failure of
inclined compression strut of concrete or tensile yield of
surrounding reinforcements.

Total force P is comprised of part P, shared by the surrounding
concrete and part P, shared by the concrete ahead of spiral end.
The ratio of P; to P, is the same as area ratio of each concrete.

P=C;- P (10a)
P,=C, - P (10b)
A
Where C; = 1 - -2
A
g
A
C4 core
4,

A ore - Area of core concrete in spirals
Ag: Gross area

3. Construction of a mechanical model at
the force-induced zone

3.1 Geometrical construction of the model

Marti'® claims that there are three different kinds of models
based on the plasticity theory. They are the STM with uni-axial
strut and tie, fan-shaped stress field model and arch model.
thiirlimann reports that fan-shaped stress field model at force-
induced zone shows the same stress resultants as the STM
(Fig. 3a).

We can determine the location of meeting point of stress
resultants by equilibrium condition and geometrical condition.

Equilibrium condition:

oy by t=0+b-t (11a)
o/ b=blby=r/ry=h/h (11b)
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Fig. 3 Fan-shaped stress field.

Geometrical condition:

b
ro = L hy = ro(1—cosay) =
2singy,

ﬁ)] —cosa (12)
2 sinag,

If we put / = b according to Saint-Venant principle,

1 a -1 1 by
b = 5(b=bg)oot=" — gy = 2tan {5(1 —3)} (13)

Transverse tension is shown as follows:

I — cos «
T = aht:abotl—_ﬁ):g_)tan_o (14)
2 sin ar, 2 2

Then,
T = 0.25P(1 -%) (15

This equation is the same as Mdrsch’s equation derived by
simple truss model, which shows similar results from finite
element analysis. Comparing with Guyon’s results widely used by
practical engineers, it generates conservative, larger values at the
range of by/b>0.15. If by/ b < 0.15, we can use the above
equation, since large local stresses calculated by elasticity theory
does not happen in reality because of stress redistribution.

3.2 Geometrical construction of nodes

The points, nodes, where stress resultants change their vector
direction, are found at the zone directly under anchorage plate and at
the point where tie and compressive resultant meet. We call each
node as C-C node and C-T node, of which position can be
determined by general methodology of the STM. Although nodes
are an imaginary concept, we can use the node location to build a

simple mechanical model.

For the C-C nodes, stress wedge of 45° angle is assumed, and
each P/2 force acts at by/ 4 point, which changes the direction at the
stress wedge. C-T nodes are the points, where stress resultants from
the stress wedge and stress resultants of transverse direction meet.

We can get an angle 0 of the stress resultant to the member axis and
the meeting point as follows.

b

ano = 1(1-2) (16)
_ by 1 b

y = Z—+Z(b— g)cotd a7

The width of the stress field is then calculated by geometrical
constraint.

b

w, = 70(sir16?+ cos 6) (18a)
b1

=0 1 18b

"2 2cos 6 (185)

‘When the member is reinforced by the spiral, P is shared by P,
and P, as shown in Eq. (10), which are the resultant forces
working at outer and inner side of the spiral. In the zone outside
the spiral, the force spreads at an angle of &, from a half the length
of the spiral confining zone and meets with transverse tensile
force. At the end of the spiral, P, force acts, of which the bearing
area is the same as that of core. Now, the geometrical location of
nodes can be determined by Egs. (16) and (17). As shown in Fig.
7,y, and y, values determine the nodal point.

Y = %ls-kgcos 0, (192)
' d, 1
Y, = ZS+Z+Z(b—dS)cos 6, (19b)

Where, [, = the length reinforced by spiral,
d, = diameter of core concrete,
0, = 35.5° when the friction coefficient is 1.4, and
6, = determined from Eg. (16).

3.3 Strength of the model

Since the mechanical model is constructed by an equilibrium
equation, the strength of each element determines the strength
of the whole model.

Failure modes and the element strength being considered are
given as follows;

+ bearing failure of C-C node: bearing strength by Eq. (3),

- compressive failure of inclined compressive strut: bi-axial
compressive strength by Eq. (1), where principal tensile strain is
given by Eq. (2) when transversely reinforced,

+ tensile failure of tensile reinforcements: yield stress of reinforcements,
where we consider the reinforcements centered by tension
resultants,

+ shear friction failure between core concrete surrounded by a
spiral and surrounding concrete outside the spiral: shear friction

strength by Eq. (8),
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- tensile failure of reinforcements at surrounding concrete outside the
spiral: tensile strength of reinforcements, assuming tensile stress by
Eq. (9) acts on the total length of spiral confining zone,

» bearing failure of the concrete wedge of spiral end: bearing
strength by Eq. (3),

- compressive failure of core concrete: compressive strength by Eq. (6).

4. Application examples and review

The proposed mechanical model is applied to several typical
test members, and the results are compared with experimental
results and other study. Selected examples are rectangular
members of a well-known test series.

4.1 Example1: rectangular section not reinforced
by spiral

We select test member A3 of Sander’s test series, which has the
properties shown in Table 1 and is reinforced as shown in Fig. 4.

4.1.1 Construction of a model

A mechanical model constructed by the principles discussed in
section 3 is shown in Fig. 5. The strength of each element is
calculated, and the failure modes and the maximum strength are
shown in Table 2. In building the model, we assume the strut
width as an average value of w; of C-C node and w; of C-T node.
Furthermore, we assume the strain of reinforcements is &,

Table 1. Material properties of test specimen A3.

Property Value
Concrete strength 23.9 MPa
Steel yield stress 555.0 MPa

Steel Young’s modulus 2.04x10° MPa
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Fig. 4 Test specimen A3.®

QGeometrical Properties
» G icalj Numerical
P z Vartahles Value
o ¢ 18.44°
¥ 53.83cm
i 19.28cm
Wi 48.19¢m
Fig. 5 Construction of the model.
Table 2. Strength of each failure mode.
(unit : kN)
Failure mode Strength of the  Calculated
members max. load
Stirrup yield 474.8 284.8
Bearing failure under plate 943.7 943.7
Inclined compression strut failure 9143 1735

4.1.2 Comparison with test result and other study

At 1109 kN and 1177 kN, the first crack and failure,
respectively, were observed. The failure mode was bearing failure
type, where stirrups remained elastic until failure.

Comparing the test values against the results reported in other
study (by Sanders) by nonlinear finite element analysis and the
proposed model. For the nonlinear finite element analysis,
DIANA program was used, and the yield criteria and tension
stiffening model are shown in Table 4. The values calculated by
the proposed model were lower than those computed by the
nonlinear analysis but more consistent and realistic than the other
two models. The main difference from the other two models was
not the failure load but the failure mode. The other two STMs
expects a ‘node-structure interface failure’, while the proposed
model expects ‘bearing fracture failure’ mode. Reports shows that
concrete under the anchorage plate fractures and does not yield
lines as expected by plasticity theory. Since ‘Node-structure
interface’ of STM is an idealistic model, the estimation of the
strength is not so accurate. In addition, the failure mode is not
clearly distinguished from the bearing failure mode at C-C node.
For the sake of this analysis, the ‘bearing failure’ is assumed to
include the ‘non-structure interface failure.”

4.2 Example 2: rectangular section reinforced
by a spiral

We select the test member, Beam 1 of Woolman’s test series,20
which is reinforced as in Fig. 6 and has properties shown in Table
2. The test member is similar to Sander’s test member B3,
previously discussed, while it is described in more detail.

4.2.1 Construction of a model

A mechanical model constructed by the principles previously
discussed in this section 4 is shown in Fig. 7. The strength of each
member is calculated, the failure mode and maximum strength are
shown in Table 6. In constructing the model, we assumed effective
reinforcements lie in the zone of length 2y,, where y, is the location
of tensile stress resultant. Proportional shares of the force P, Py and P,,
are determined by the ratio of core and surrounding concrete.
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Fig. 6 Test specimen beam 1.2

Table 5. Material properties of test specimen beam1.

Property Value
Concrete strength 36.4 MPa
Steel yield stress 448.5 MPa

Table 6. Strength of each failure mode.
Strength of

Calculated

ZaY Geometrical Prop Failure the members  max. load
PSR o G I > - -
",,/ (r" i /4)1!';' | /2 Vertabies | Vaue + Stirrup yield (by Tension T2) 197.6 2297
» : % s g - Inclined compression strut fracture 1213 2779
[ 15.6¢
" 28.em » Core in spiral fracture 1712 1712
» 43.91em . gl . .
. osbn Sl.lear mctloP of spiral by confining 1”2 2464
- 21.100m stirrup yield
- Bearing failure at the end of spiral” 1146 2017
Fig. 7 Construction of the model. - Shear friction failure between spiral 643.6 1490
and surrounding concrete
(unit : kN)
Table 3. Comparison of various calculations and test resuit.
Predicted Failure collapse of
ul shear transfer
Model (or test) load mode Pres/ Pea
Test, ultimate 1,177 Bearing fracture ~ —
(experimental value)
Conventional Node-structure compression
STM!® 907.4 interface failure 1.30 failure
Modified X
16 889.8 " 1.32 spalling
ST™M of cover 4
Proposed model 943.7 Bearing fracture 1.25
Nonlinear inclined compression struts

finite clement 1,059 Bearing fracture 1.11

Tensile failure mode by a radial tension at surrounding concrete is
govemed by yielding of the reinforcements. Since the failure
strength of the strut was very large, the result was treated as an
unexplainable outlier. The three failure modes in the Table
occurred consequently, i.e. if one of those failure modes took
place, then the other elements was burdened by the previous load.

4.2.2 Comparison with the experimental result

At 1LII12kN and 1,403kN, the first crack and failure,
respectively, were observed. At failure, surrounding concrete fell off
and concrete at the end of the spiral fractured. Fig. 8 shows the
failure amode.

As in example 1, most reinforcements stayed at low stress level
up to the final failure, while the reinforcement surrounding a spiral

Fig. 8 Failure of concrete surrounding the confined core.

yielded. This failure mode is a shear friction failure as predicted.
Since shear friction failure and end zone concrete failure occurred
consecutively, the final failure looked like a concurrent faiture.

4.2.3 Comparison with other reported study

We compare the experimental values with the results reported in
other study by Woolman, computed by nonlinear finite element
analysis, and predicted by the proposed model in Table 7. For the
nonlinear finite element analysis, we use values of Table 4, not
considering the effect of the spiral. The results calculated by the
proposed model were very similar to the experimental results of
Woolman’s result. The main difference from other STMs is the
failure mode. Other STMs predict yield failure of reinforcement,
while proposed model predicts shear friction failure as the critical

Table 4. Yield criteria for the nonlinear FEM analysis.

Yield criteria

Mohr-coulomb, friction angle ¢, = 37°

Stress cut-off

Linear

Concrete fracture criteria Tensile strength

o, = 0.334,/c' ,(MPa),where A=1.0

Shear retension

Constant shear retension, shear retention factor £= 0.5

Nonlinear tension softening

Smeared crack model parabolic tension softening model

Steel yield condition Yield criteria

Von mises yield criteria
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Table 7. Comparison of various calculations and test result.

Predicted
Model (or test) Failure mode Pt ! Pegs
load
Concrete surrounding
Test, ultimate 1403 spirals and ties spalled off, _
(experimental value) concrete ahead of the
spiral was crushed
g%‘; entional 1481  Brusting tie yields 0.95
Modified "
STM!® 1432 0.98
Shear Friction failure
between concretes in and
Proposed model 1491  surrounding the spiral, 0.94
and bearing failure ahead
of spiral follows
Nonlinear finite 1148  Bearing fracture 1.22

element

failure mode. The computational result of nonlinear finite element
analysis was significantly different from the experimental result.
We construe that the main cause of the difference is of the
dimension of the modeling. Two-dimensional analysis by nonlinear
finite element method cannot give a good prediction for three-
dimensional failure mode like this member, although it tends to
result in a good prediction for two-dimensional failure like the
previous example.

5. Conclusion

In this study, we constructed a mechanical model for the end
anchorage zone of prestressed concrete members based on the
plasticity theory and concrete material properties. The following
conclusions from comparison study of the proposed model and
typical test results the are presented.

1) The proposed mechanical model showed a similar or better
estimation of the failure load than other analysis models.

2) The proposed model showed some advantages in predicting
the failure mode. Using this advantage, we could better predict a
shear friction failure between core and surrounding concrete and
we found that a bearing failure at the end zone of core concrete
occurred successively after the shear friction failure.

3) Two-dimensional finite element analysis is effective for two-
dimensional failure analysis, while it shows some shortcomings in
its application to three-dimensional failure mode, which occurs at
the anchorage zone reinforced by a spiral.

4) From this study, it can be safely concluded that the proposed
mechanical model explained the mechanical behavior of the
concrete members and partly overcame the limitation of two-
dimensional analysis, even though it was not meant to replace the
most accurate experimental methods or other more refined analysis.
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