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Application of Fractal Theory to Various Surfaces
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Abstract: In this study, the general theory of fractality is discussed to provide a fundamental understanding of fractal geometry
applied to heterogeneous material surfaces like pavement surface and rock surface. It is well known that many physical phenomena
and systems are chaotic, random and that the features of roughness are found at a wide spectrum of length scales from the length of
the sample to the atomic scales. Studying the mechanics of these physical phenomena, it is absolutely necessary to characterize such
muitiscaled rough surfaces and to know the structural property of such surfaces at all length scales relevant to the phenomenon.
This study emphasizes the role of fractal geometry to characterize the roughness of various surfaces. Pavement roughness and rock

surface roughness were examined to correlate their roughness property to fractality.
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1. Introduction

Fractal comes from the Latin adjective “fractus,” which has the
same root as fraction and fragmented; it is related to “frangere,”
which means “to break.” Mandelbrot' introduced the concept of fractal
“dimensions,” a concept developed much earlier in specialized
areas of physics and mathematics, to general sciences. The term Man-
delbrot called “fractal” was a relatively new topic, but individual
fractals have been known to the mathematicians for quite a long
time. The basic fractal arose roughly between 1875 and 1922 and
remains associated with names like Weierstrass, Cantor, Peano, Leb-
esque, Hausdorfl, and Besicovitch.

Topology is a the well-defined branch of mathematics that
addresses the measurement, properties, and relationships of points,
lines, angles, surfaces and solids. This branch of mathematics
studies the properties of given elements which remain invariant
under specified transformations. Topology also represents an
arrangement of objects or parts, which suggest a particular shape
or figure. Obviously, this particular aspect of the notion of a shape
is very useful in the study of natural curves such as coastlines, frac-
ture surface profiles, rock surfaces, pavement surface etc., because
it simply indicates that they are all topologically identical to each
other. This identity is underlined by the fact that the topological
dimension of all curves is equal to 1.

Considering an isotropic and homogeneous rough surface of
dimension D, the property of isotropy relates to the invariance of
the probability distribution under the rotation of the coordinate
axes and reflection on any plane. The homogeneity of a surface
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implies that the probability distribution of the heights is independent
of the location on the surface. The profile, z(x), of such a surface
along a straight line and in any arbitrary direction is of dimension
D=D,—1'andisa statistically valid representation of the surface.
Such a profile is typically obtained by a mechanical measurement or
by an optical technique.

In this study, fractal properties are extended to the roughness of
such surfaces as pavement surface and rock surface. And fractal
dimensions for each different surface are qualitatively expressed in
terms of conventional properties.

2. Application of fractal theory to pavement
surface

2.1 Skid number

Skid resistance is by definition” “the retarding force generated
by the interaction between a pavement and a tire under locked
nonrotating conditions.” Skid resistance measurements, conducted
in accordance with ASTM Standard E247, are reported as Skid
Number (SN) values.® SN values are usually measured at 40 mph
and are equal to the force required to slide the locked test tire on a
wet pavement, multiplied by 100 and divided by the effective
wheel load.” Numerous studies on the relationship of accident risk
with frictional coefficients, as measured on the road, have con-
cluded that accident risk decreases with better skid resistance.>®
Usually, skid resistance is a very difficult parameter to estimate.
The tire-pavement friction is affected by a large number of param-
eters, which include the type and condition of tire, braking system,
speed, temperature, etc.

An attempt to approximate the pavement surface texture with
fractals is made by Panagouli.” In order to take into account its
accurate geometry, the fractal concept is a proper mathematical tool
for pavement surface. Using fractal interpolation function, Pana-
gouli generated pavement surface texture in terms of fractal
dimension range of 1.043 to 1.589.
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2.2 Mathematical model for the approximation

In this section the fractal geometry by means of the notion of the
fractal interpolation functions (FI) is will be defined. Generally,
when an experimental curve given by a finite number of points
{(x,¥); i=0, 1, K, N} is approximated, a type of mathematical
model that approximate this curve has to be chosen in advance.
Thus, a transformation from a discrete set of data to a continuous
model is made. Such a transformation can be done in our case by
using a fractal interpolation function g : [x,, x5] = R, ie. a func-
tion g such that g(x;) = y;; i= 0, K, N. More specifically, if C° is the
set of continuous functions g : [x,, xy] = R, then the sequence of
functions g, + ;(x) =(7g,,)(x), where the operator 7: C° — C’ is
defined by:

(Tehax+b)=cx+dgx)+f; i=L2KN M

And it converges to a curve gras m — 0. The convergence of 7
to a curve ¢ e C° is due to the fact T that is a contraction

mapping8 Thus, T possesses a unique fixed point in C°, This curve
is also the unique attractor of the ‘hyperbolic’ iterated function
system (IFS) {R S w,i=1,2,K, N} defined by the ‘shear’ trans-
formation,

{x,y} _)W'{}C;} — liai :j{;_i} {;’};izl,K,N )
¢; d, ;

Every transformation w; which 1s specified by the five real num-
bers a;, ¢;, d, and f; is constrained by the given set of data accord-
ing to:

w,{ﬁ} = {Q} and w,{x_N} = {f’};l: LEN ()
Yo Yio1 YN Yi

From the above restrictions, it follows that there is one free
parameter in each transformation. We choose this parameter to be d}
which must obey the boundary condition of 0 < d,< 1. Moreover
the remaining coefficients are given by the formulas:
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The parameters, which characterize this interpolation function,
are given in Table 1.

It is important to mention here that the Hausdorff dimension has a
restricted application to the study of fractal curves resulting in such
science fields as physics, biology or engineering. For these reasons,
the fractal dimension D of the fractal interpolation function is used.
For the definition of this dimension D let us assume that £ > 0 and M&)
denotes the number of square boxes of side length £ which intersect
the graph of the fractal interpolation function. Then the fractal
dimension D is given by the relation M(&) ~ constantx& ™ as £— 0. It
has been shown that if 3" ~_ || > 1 and the interpolation points

i

Table 1 Parameters characterizing pavement surfaces.

aQ; S d; b; fi
0.1111 0.0046 0.90 0.0 0.00
0.0010 —0.0043 0.75 5.0 0.20
01111 0.0013 0.65 10.0 0.00
0.1111 0.0014 0.50 15.0 0.05
0.1111 0.0010 0.50 20.0 0.11
0.1111 0.0014 0.40 25.0 0.15
0.1111 -0.0013 0.35 30.0 0.21
0.1111 —-0.0013 0.95 35.0 0.15
0.1111 -0.0020 0.20 40.0 0.08

do not lie on a single straight line, then the fractal dimension of F
is the unique solution D to the following Equation:

N
Y jdjal " =1 (5)
i=1
It is remarkable that the fractal dimension does not depend on the

values {y; i=0, 1,K, N}, aside from the constraint that the interpola-

tion points be noncollinear. Hence it is easy to explore a collection
of fractal interpolation functions, having the same fractal dimension,
by imposing the following simple constraint on the vertical scaling

factors d/;

%\df\ =N ©)

i=1

In the sequel fractal interpolation functions are generalized by
assuming that the given set of points has the form {(x,
F) e ®xY, i=0,1, K, N} with x,<x, <A <xy. The interpo-
lation function corresponding to this set of data is an continuous
function £ [x,, xy] = Y such that fix,)=F; i=0, 1, K, N.If Z
denotes the Cartesian product space R x¥, & denotes a positive
number, and d is a metric defined on Z by the relation:

dz1,2)) = by - | + O.d (11, 12) @)

for all points z; = (x), y;) and z,=(x,, y») in Z, then (Z, d) is a
complete mefric space. Based on the above data the following
transformations are defined:

Ll = =[x, x}, L{x)=ax+b ®)

where a;, b; are given by the relation above M;: Z— Y and such
that:

d,(M{a, y), M;(b, y)) < cla - b] (92)
foralla,b € R andy e ¥V
d,(M{x, a), M;(x, b)) < sd, (a, b) (9b)

forallx € R anda,b e Y

These two transformations (L, M) define an IFS {Z|w;; i=1, 2,
K, N}, where w; (x, y) = (L), M, ).

It is also assumed that every transformation A4, is constrained by the
given set of data according to:

M (x,, F)=F;. (10)
M; ey, Fy)=F;
From Egs. 4, 8, and 10, it is easily obtained that:
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Wi (Xos F5) = (x;.1, Fi. ) and (11
w; (xw, Fiy) = (%, F7)

The IFS {Z] w; i=1, 2, K, N} defined above has a unique attrac-
tor, which is the graph of a continuous function /- [x,, xy] = ¥ It
satisfies the relations f(x;) F;, i.e. is the fractal interpolation function
of the data. It is important to mention here that the previous results
can be used to obtain flexible interpolation functions. This has
already been achieved at the beginning of this section where fractal
interpolation functions g : [x,, xy] = R were obtained.

2.3 Simulation of the pavement surface

In arder to describe the pavement surface texture, information about
the depth of micro-texture and macro-texture is needed. Pavement
irregularities are continuous from pavement defaults (mega-texture) to
through the micro scale. The pattem of pavement surface irregularities
remains similar and is reproduced irrespective of the scale of the sur-
face texture irregularity considered texture. The fractal nature of the
pavement surface is, therefore, inherent. As it has been mentioned,
fractal concepts have already been used in evaluating certain sub-
jects in pavement engineering.

The range of surface irregularities which is of interest is skid
resistance, comprising what has been described as micro/macto
texture. It has been mentioned that micro-textures are classified as
irregularities between 0.005 and 0.3 mm. A harsh surface pavement
has an average micro-texture depth of 0.05 mm (50 on). Macro-tex-
tures are considered as irregularities between 0.3 and 4.0 mm. A
pavement surface is considered rough if the average depth of
macro-texture is more than 1.0 mm. Apart from the depth of surface
irregularities, their density (wavelength) is also necessary for the
geometric determination of the pavement surface profile. According to
the literature, this scale of surface irregularities the wavelength (A4) is
about 3 to 20 times greater than the depth of the irregularities them-
selves.”

From the above, it is obvious that the fractal approximation offers
an ideal framework for the description of the pavement surface. This
approximation covers all types of pavement surface, as classified with
respect to their micro/macro texture.

In Fig. 1 shows all four characteristics and a typical profile of
the pavement surfaces, which are approximated by fractal interpo-
lation functions. For every profile, a different set of free parameters
d; i=1,2,K, 9 has been taken.

In Table 2 we present free parameters for every fractal interpola-
tion function, which corresponds to a different type of pavement
surface.

As it has already been mentioned, there is a gjves set of points for
every fractal interpolation function. In our case, where four differ-
ent fractal interpolation functions are given, these sets of data are
as follows.

For a rough and harsh pavement surface texture:

(O yi=0,1,2,K,9 =

£(0.0, 0.0), (5.0, 0.8), (10.0, 0.0), (15.0, 0.005),
(20.0,0.01), (25.0,-0.7), (30.0, ~0.07),

(35.0 —0.04), (40.0, =0.01), (45.0, 0.0)}

For a rough and polished pavement surface texture:
(707 5i=0,1,2,K,9 =
{(0.0, 0.0, (5.0, 0.8), (10.0, 1.0), (15.0, 0.005),

T T T T T
—v— Rough & Harsh
---#-- Rough & Polished
o Smooth & Harsh |
Smooth & Polished

0.0 -

Surface Height Ratio

-05

0 10 20 30 40 50
Surface Length Ratia

Fig. 1 Coefficients of fractal interpolation functions.

(20.0,0.003), (25.0, -0.6), (30.0, ~0.005),
(35.0 =0.002), (40.0, ~0.001), (45.0, 0.0)}

For a smooth and harsh pavement surface texture:

(5 y511=0,1,2,K,9) =

£(0.0,0.0), (5.0, 0.06), (10.0,~0.12),(15.0, 0.18),
(20.0,-0.02), (25.0, 0.03), (30.0, -0.18),

(35.0, 0.002), (40.0,—0.06), (45.0, 0.0)}

For a smooth and polished pavement surface texture:

(7 i=0,1,2,K,9 =

{(0.0,0.0), (5.0,0.05), (10.0, 0.00), (15.0, 0.01),
(20.0,0.01), (25.0, 0.05), (30.0, -0.07),
(35.0,-0.04), (40.0,~0.01), (45.0, 0.0)}

And the relationship between pavement length and irregularities
is depicted in Figs. 2 and 3 for rough and smooth surfaces, respec-
tively.

2.4 Correlation between skid number and fractal
dimension

As it is shown in Fig. 4, every type of pavement surface approxi-
mated by a fractal interpolation fimction is characterized by a value
of the fractal dimension D. It should be noted here that D has its
maximum value in the case of a pavement surface with both micro
texture and macro texture. Moreover, it is observed that D is greater
for these cases, where the surface texture irregularities predomi-
nate at the micro scale, than for the cases, where these irregulari-
ties predominate at the macro scale. According to the literature, the
average values of skid resistance (SN) for the characteristic pavement
surface types are presented in Table 3. Based on Figs. Z and 3, where
every road profile is approximated by a fractal interpolation func-
tion with a fractal dimension D, and on Table 3, a relation between
the skid number and the fractal dimenston can be identified. In Fig,
4 this relation is presented for the characteristic pavement surfaces.
Fractal dimension and skid number seem to vary in a proportional way.

Fractal dimension and SN values seem to be proportional to each
other. After regression analysis, following relationship has been
found:

D=001148 - (SN)+0.8233 (12)

By using the fractal interpolation function, pavement surface
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Fig. 3 Pavement surface texture—smooth surfaces.

Table 2 The free parameters d; of every fractal interpolation
function.

Profile d] dz d3 d4 d5 d6 d7 dg dg

A 045 050 040 040 050 040 035 035 030

020 020 0.10 0.10 020 020 0.10 0.10 0.10

B
C 040 035 030 030 040 035 040 030 035
D 015 0.10 015 015 0.10 0.15 0.10 0.15 0.05

can be simulated in terms of fractal dimension. Although fractal
dimension from interpolation function depends on the coefficients
of fractal interpolation fumction, it can be substituted by skid number
in the mathematical framework. It is apparent that the parameters of
interpolation function need significant further investigations.

3. Application of fractal theory to
rock surface

Surface profiling in rock can be performed using either the
actual rough surface or exact negative replicas often made with
plaster of silicone rubber. Silicon rubber is well suited for injection
into discontinuities that are hard to reach with mapping instru-
ments, as their injection is followed by chemical curing rather than
air dry curing. Surface roughness of rock can be classified in the
three orders of roughness. First order roughness is the large wave
of the surface, second order roughness is at a finer level that con-
siders the small scale asperities, and the fine asperities or grain size

Table 3 Average values of skid number for different pavement

profiles.
Profile Characteristic pavement profiles Skid Number
A Pavements having both micro and macro SN =65-70
texture
B Polished but with macro texture pavements ~ SN =25
C  Smooth but with micro texture pavements SN =60
D Mirror pavements; lack of micro macro SN =20
texture
E  Typical average pavements SN =40
20 T T T T T T T T N T
5
2 151 B
o
[03
E
z i ]
&
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D = 0.01148 (SN) + 0.8233
R’=0.99923 1
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Fig. 4 Relationship between fractal dimension and skid numbe.

level of asperities are considered to be at the third order of roughness.
The suitable measuring device should be chosen according to the
required resolution for the mapping of the rock surfaces.

3.1 Joint roughness coefficient (JRC)

The engineering properties of rock masses are influenced by
two important factors: (1) the physical properties of intact blocks of
rock, and (2) the properties of discontinuities such as joints, faults,
foliation, and bedding planes, which bound the individual blocks.

Structures built in or on a rock mass are affected by the shear
strength of discontinuities within the mass. If a rock mass contains
unfavorably oriented discontinuities, its strength for engineering
purposes may be greatly reduced. Rock mass behavior is also influ-
enced by rock joint properties such as surface roughness, weather-
ing, and the presence of infilling. The surface roughness of a rock
joint controls the shear strength and dilatancy of the rock joint.
The strength of the whole mass of rock (the intact blocks plus the
inherent discontinuities) must be considered in the design of struc-
ture.' Many researches have been conduced to investigate some of
the factors, which influence the strength along the natural disconti-
nuities. Of particular notice may be the nature and magnitude of the
surface roughness on the rock joint surfaces.

Joint surfaces can be digitized with a mechanical profilometer like
the one used in this study. These linear profiles form the basis for
analytical measures of roughness. Fractal dimension can be
obtained by surface roughness. Once the characteristics of the fractal
dimension and joint roughness coefficient are determined, an empir-
ical relationship relating shear strength and fractal dimension can
be established.

"The joint roughness coefficient is determined by comparing the
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rock surface roughness with 10 sets of standardized rock roughness
profiles ranging from 0 to 20 as shown in Fig. 5. This method of rough-
ness determination has been supported by the Intenational Society
of Rock Mechanics."!

3.2 Correlation between JRC and fractal dimension

Berry and Lewis'> determined the fractal dimension for Jjoint
and bedding planes using elevation data measured along a line tra-
versing these surfaces. They made field measurements of rock sur-
face roughness on a joint surface exposed by a two-plane wedge
type rock slide at the Libby Dam, Montana. They described an
empirical relationship between JRC and fractal dimension (D) for
15 rock joint profiles. The empirical relationship between JRC and
fractal dimension is a linear relationship to each other like the fol-
lowing:

JCR=-1022.55+1023.92 - D (13)

where, JRC is the joint roughness coefficient, D is the fractal
dimension.

Previously13 also found the relationship between joint rough-
ness and fractal dimension to be:

JCR=-1001.56+1003.11 + D (14)

The approximated relationship between joint roughness coeffi-
cient and fractal dimension can be of exponential relation rather
than linear relationship (as it can be seen in Fig. 6). Its suggested
relation is presented in the following:

D=0.00128* exp (JRC/7.75507) (15)

Therefore, joint roughness coefficient can be determined more
precisely by using Eq. 15.

4. Conclusions and discussion

It is well known that many physical phenomena and systems
are chaotic, random and that various features of roughness are
found at a wide spectrum of length scales from the length of the
sample to the atomic scales. This study emphasizes the role of
fractal geometry to characterize the roughness of various surfaces.
Pavement roughness and rock surface roughness were examined
in order to correlate their roughness property to fractality. Using
the fractality concept, following conclusions can be drawn;

1) The fractal geometry by means of the notion of the fractal
interpolation function is defined to characterize the roughness of
the pavement surface.

2) Fractal dimension and skid number (SN) have a proportional
relationship expressed as,

D=0.01148 - (SN)+0.8233

3) Correlation between joint roughness coefficient (JRC) of
rock surface and the fractal dimension is expressed as,

D=0.00128* exp (JRC/7.75507)

Acknowledgements

The authors wish to acknowledge the support of the Infra-Struc-
tures Assessment Research Center (Project No.C104A10 20001)
under grants of Korea Ministry of Construction and Transportation

TYPICAL ROUGHNESS PROFILES for JRC range:

1 o 4 o-2
2 P —~ 2-4
3 y————-———————-————-—‘-————-——'—'l 4-06
4 [ | -8

6 W 10-12

8 — -1
9 }"'\—/‘_’_’/_,-W 16 - 18

] cm  scavs

Fig. 5 Rock joint roughness coefficient. '

1.020 T T T ¥ T T T Y T T T

1,018 |- A  Turk etal. (1987) ]
1016 L © Smith (1989) ]
1.014 |- ]

c N j

S 1012 | -

[7:] L

& 1.010 | -

£ r i

0O 1.008 | T

g 1.006 | o -

© F -

& 1.004 - o 5
1.002 B 6//6// \ JRCIT 755—-
oo | 2/ D=0.00128%exp s

000 1+ X’=1.675E-6 ]
0.008 1 1 ] L | . 1 " 1 . ] . | " | " 1 . i X |

0 2 4 6 8 10 12 14 16 18 20
Joint Roughness Coefficients

Fig. 6 Correlation between JRC and fractal dimension.

(MOCT). Additionally, the first author wishes to thank her Ph.D.
supervisor Yunping Xi, professor in University of Colorado at
Boulder, USA, for inspiring discussions.

References

1. Mandelbrot, B. B., The Fractal Geometry of Nature, W. H.
Freemann, New York, 1982, pp.1~83.

2. ASTM, Standard Test Method for Plane-Strain Fracture
Toughness of Metallic Materials, E399-83, ASTM Annual Book of
Standards, ASTM, Philadelphia, 1983.

3. ASTM, Surface characteristic of roadways, A Symposium
Sponsored by ASTM Committee E17 and PIARC, ASTM, Phil-
adelphia, 1983, pp.28~43.

4. ASTM, The tire pavement interface, A Symposium Spon-
sored by ASTM Committee E17, ASTM Special Technical Pub-
lication 929, Baltimore, 1986.

5. Harwood, D. W,, Blackburn, R. R., John, A. D., and Sharp,
M. C,, Evaluation of accident rate-skid number relationships for
a nationwide sample of highway sections, TRR 624, TRB, Wash-
ington, DC, 1976, pp.1~56.

International Journal of Concrete Structures and Materials (Vol.18 No.1E, June 20086) | 27



6. Hosking, J. R., Relationship between skidding resistance
and accident frequency: estimates based on seasonal variations,
TRRL Report RR76, Department of Transport, Crowthorne,
UK, 1987.

7. Panagouli, O. K., “Skid Resistance and Fractal Structure of
Pavement Surface,” Chaos, Solitons and Fractals, Vol.9, No.3,
1998, pp.493~505.

8. Barnsley, M., Fractals Everywhere, Academic Press, New
York, 1988, pp.1~192.

9. Descormet, G., A criterion for optimizing surface char-
acteristics, TRR 1215, TRB, Washington, DC, 1990, pp.1~75.

10. Goodman, R. E., Methods of Geological Engineering,

West publishing, 1976, pp.1~366.

11. Brown, S. R. and Scholz, C. H., “Broad Bandwidth Study
of the Topography of Natural Rock Surfaces,” Journal of Geo-
physics Research, Vol.90, 1985, pp.12575~12582.

12. Berry, M. V. and Lewis, Z. V., “On the Weierstrass-Man-
delbrot fractal function,” Proceedings of the Royal Society of
London, Series A (Mathematical and Physical Sciences),
Vol.370, No.1743, 1980, pp.459~484.

13. Kulatilake, P. H. S. W., Shou, G, and Huang, T. H,,
“Spectral-Based Peak-Shear-Strength Criterion for Rock Joints,”
Journal of geotechnical engineering, Vol.121, No.11, 1995,
789pp.

28 | International Journal of Concrete Structures and Materials (Vol.18 No.1E, June 2006)



