Vol. 5, No. 2, pp. 34-37, December 2006

INTERNATIONAL
JOURNAL OF SAFETY

[ www.kosds.orkr ||

Generation of Effective Cutting Conditions for Machining Safety
in a Manufacturing Industry

Ji Han Seo* and Byoung Tae Park

Department, of Industrial & Systems Engineering, Myongji College, Seoul 120-848, Korea
(Receive October 13, 2006; Accepted December 13, 2006)

Abstract : As part of an effort to systematize the operation planning for cutting processes, the neural network
method has been applied to model the process of selecting cutting conditions and subsequently to arrive at effective
and safe cutting conditions through learning during training of the model. New cutting conditions that are more
effective and safer for the given circumstance are obtained. The proposed algorithm deletes the old information pre-
viously learned, and then makes the network make at improvement by learning. As a result, the new algorithm pro-
vides useful cutting conditions for safer manufacturing environments. A variety of simulation cases illustrate the
performance of the proposed methodology. The simulation results are provided and discussed.
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1. Introduction

In manufacturing systems, CAPP(Computer-aided Pro-
cess Planning) is driven to design [1] links design to
manufacturing, It determines a set of instructions and
machining parameters required to manufacture a part.
There are generally two approaches to CAPP systems,
namely variant one and generative one. The variant
approach is basically a computerized database retrieval
approach. The variant or retrieval approach is based on
group technology methods of classifying and coding
parts for the purpose of segregating these parts into
family groups. The second approach to CAPP is the
generative type. Systems of this type synthesize the pro-
cess plan for a new part [2].

The generative approach provides fast advice to
designers early in the stage of design process and is
closely coupled with the product-modeling activities.
Once the manufacturing technology and the type of
equipment or process have been chosen, further detailed
planning is carried out as usual [3]. In the first stage of
process planning, the machining processes, machines
and tooling capable of performing these processes, and
the machining groups are established. In the second
stage of process planning called operation planning, par-
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tial operations are selected, cutting parameters are deter-
mined, and time and cost are calculated to convert a
piece part from its initial form to a predetermined shape
as per the engineering drawing [4].

The problem of the past works that the retrieved data
should be modified according to the actual operation
conditions because only a few - i.e. material type, tool
type - among many factors affecting the operation are
considered for selecting cutting parameters.

Related to machining safety in metal cutting, there are
a representative and habitual mistake that operators per-
form without considering carefully the characteristic of
machine or workpiece for a reduction of working hours.
That is operators tend to determine excessively cutting
parameters such as depth and width of cut, feed, veloc-
ity, etc. for finishing the work more quickly. It causes
many potential risks. These are: a broken tool and a
splitted insert can harm the operator's eyes, skin and
body; hot metal and flying particles can cause skin
burns and damage the eyes; and the spindle vibration of
an over-loaded machine tool can make operators tense
and can induce operator's secondary mistakes.

In this study, for efficient and safe enhancements of
cutting conditions, ESCC( Enhancement System of Cut-
ting Conditions for machining safety) for milling oper-
ations has been developed. In the system, the methodology
of the fuzzy ARTMAP neural network, including the



Generation of Effective Cutting Conditions for Machining Safety in a Manufacturing Industry 35

newly suggested algorithm, is applied to model the pro-
cess of learning and enhancing cutting conditions. This
research has several efficiencies such as reducing pro-
cessing time and cost as well as satisfaction of machin-
ing safety in the manufacturing situations. A variety of
simulations illustrate the performance of the ESCC, and
then the simulation results are provided and discussed.

2. New Algorithm for the Enhancement of
Cutting Conditions

When new cutting conditions that are more effective
are obtained through real machining experiments, etc.,
the new algorithm proposed here deletes the old infor-
mation learned through the fuzzy ARTMAP, and then
makes the network learn the better ones.

A fuzzy ARTMAP is selected for incremental learn-
ing of the obtained cutting conditions. Compared with
other popular neural networks, it showed the most effi-
cient and robust learning performance. In addition, it
has the unique property of incremental supervised learn-
ing, and overcomes the problems of long training and
catastrophic forgetting, associated with many popular
networks. Further details of this network can be found
in [5].

This algorithm is two procedures such as: deletion
and creation. By the deletion procedure, the previously
learned category J and K link of the fuzzy ARTMAP is
removed, and then new category J and K™ link for
more effective learning patterns is generated by the cre-
ation procedure. This new algorithm can be briefly
described as follows:

The Deletion Procedure

- Perform complement coding of input pattern a® on
layer F; for ART, and then present the complement
coded input pattern I, = (a?, a“®y to layer FY.

- Determine a winner neuron J at layer F; by a
choice function T;(I,), and then perform the vigilance
test.

- Search weight wf: that has a value of one, and cat-
egory k = K using category j =/

- Set the previously found weight wi; to zero.

Creation Procedure

- Perform complement coding of input pattern
b(i)(new).

- Using I, and Iy= (bD®W) pe@@ew)y *cal) the Fuzzy
ARTMAP learning procedure.

3. Procedure for the Enhancement of
Cutting Conditions

ESCC consists of two fuzzy ARTMAP networks with
the suggested algorithm and other auxiliary sub-mod-
ules. The first fuzzy ARTMAP (Model-V) is for learn-
ing and enhancing cutting speed ¥, and the second
fuzzy ARTMAP (Model-f) is for learning and enhance-
ment of feed f. Table 1 and 2 show input parameters
defined for the fuzzy ARTMAP networks, real values,
and encoded input values which range from 0 to 1 for
ART,, ART,; and ART,. For the Model-V, input param-
eters described in Table 1 and Table 2 (a) are used, and
for the Model-f, input parameters described in Table 1

Table 1. Input parameters for ART,.

Input Input values
Real val
parameters cal values of ART,
Medi I
. edium carbon leaded 0.9000
Workpiece material  (ANSI : 10L45, 10L50)
H 225 0.5000
ardness 50-400
(BHN) :
Face mill 0.8750
Cutter type
Carbide-Uncoated
arbide-Uncoate 0.8000
Cutter material (ISO : P20, P30, P40)
Depth of cut 0.01~13.0 10 0.6664
(mm) (15.0)
Tool li 60 0.999%
ool life 0.01~60
(min) :
N i 24 0.7419
ose radius 0.1-3.2
(mm)
Table 2. Input parameters for ART.
(a) ART,y
Input parameters Real values Input values of ART,
Cutti d 80 0.4366
utting sipee X 18-160
V (m/min) .
(b) ART,
Input parameters Real values Input values of ART,
0.8265

Feed, f 0415
(mm/tooth) 0.01~0.5 :
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Fig. 1. Enhancement procedure in ESCC.

and Table 2 (b) are used.

The flowchart in Fig. | summarizes the overall pro-
cedure in ESCC. Real values of input parameters for
ART, sent to ESCC is encoded to the input form for
ART,, and then checked. If a cutting condition is not
proposed, or in other words, the pattern is previously
unlearned in the networks, the cutting condition gener-
ated from machining data handbook is sent to the pre-
vious encoding module, and then leamed by the fuzzy
ARTMAP networks. Otherwise, The new algorithm per-
forms the step to confirm whether the proposed cutting
condition is enhanced through the suggested algorithm
or not. If the cutting condition has to be enhanced, the
better one generated through machining experiments,
etc. is sent to the encoding module, and enhanced by
the suggested algorithm. Otherwise, the cutting condi-
tion is presented to the user through the decoding mod-
ule.

0.7500 0.4366 0.8265
0.7500 0.0423 0.0571
0.7500 0.0141 0.03C6
0.7500 0.0423 0.0306
0.7500 0.0141 0.0061

4 0.9000 0.5000 0.8750 ...
15 0.9000 0.5000 0.7500 ...
18 0.9000 0.5000 0.7500 ...
26 0.9000 0.5000 0.7500 ...
29 0.9000 0.5000 0.7500 ...

0.7500 0.5856 0.8265
0.7500 0.1741 0.7714
0.7500 0.2075 0.4857
0.7500 0.3187 0.4163
0.7500 0.2607 0.3449

0.9000 0.5000 0.8750 ...
154 0.9000 0.5000 0.7500 ...
18 0.9000 0.5000 0.7500 ...
26 0.9600 0.5000 0.7500 ...
29¢0.9000 0.5000 0.7500 ...

Fig. 2. Examples of learning patterns.

4. Test and Results

The fuzzy ARTMAP neural network is capable of on-
line and off-line learning in response to arbitrary
sequences of analogue and binary input/target patterns.
The performance of the fuzzy ARTMAP and the pro-
posed algorithm is simulated through two classes of
experiments on a personal computer. These experiments
are (1) off-line learning performance of the fuzzy ART-
MAP neural network in relation to back-propagation
system, and (2) on-line learning performance of the
fuzzy ARTMAP neural network. Fig. 2 shows encoded
learning patterns collected to perform these experiments.
The 36 learning patterns are composed of 31 machining
data presented in the handbook [6] and five effective
cutting conditions obtained from the reference [7]. The
first column in Fig. 2 presents pattern number, and the
rest of the columns are mapped with input parameters
in Table 3. The following show procedures and results
of experiments performed when the value of choice
parameter o, learning rate 3, and vigilance parameter in
map field p,, are 0.001, 0.999, and 1.0 respectively.

Table 3. Comparison with target values and calculated values proposed from fuzzy ARTMAP neural network, in case p, and p, are

0.99 and 0.99 respectively.

Type of Pattern Encoded values Decoded values

Model no. Vr Ve fr fe Ve (m/miny Ve (m/min)  fr (mm/iooth) Jc (mm/rooth)
Model-V 7 04366 04338 - - 80.00 79.60 - -
Model-f 7 - - 0.4898 0.4878 - - 0.2500 0.2490

Vy: Target ¥, Vi . Calculated V) f: Target £ fc - Calculated f
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Table 4. On-line learning results of the fuzzy ARTMAP neural network

Type of Value of vigilance parameters, # of category Mean test errors (%) Max. test errors (%)
Model Pas Pb ART, ART, V(m/min)y  f(mmftooth) V(m/min) f(mm/tooth)
Model-V 31 10 0.02 - 0.64 -
p.= 0.99, pp=0.99
Model-f 31 14 - 0.01 - 041

Case 1 Off-line Learning Performance of the Fuzzy
ARTMAP Neural Network

First, the experiments for deciding the values of the
network parameters providing the best learning perfor-
mance were carried out with the given 31 learning pat-
terns in off-line learning mode. The network showed
the best performance when the values of vigilance
parameters p, and p, were both 0.99. In this case, mean
test errors (%) were 0.02 and 0.01, and maximum test
errors (%) were 0.64 and 0.41 for V and f respectively.
Target values were compared with decoded values that
were proposed by the fuzzy ARTMAP in Table 3. In
the case of the seventh pattern, the decoded values of
Vr and Ve in the Model-V were 80.0 and 79.6, and the
decoded values of fr and f- were 0.250 and 0.249
respectively in the Model-f.

The results tested with same learning patterns in the
back-propagation system showed that mean test errors
(%) were 7.6 and 9.1, and maximum test errors (%)
were 46.7 and 146.1.

Case 2 On-line Learning Performance of the Fuzzy
ARTMAP Neural Network

For the test of on-line learning ability of fuzzy ART-
MAP neural network, 31 learning patterns were pre-
sented one by one to the network in an arbitrary order.
Table 4 shows on-line learning results of the network.
As shown in this table, compared with off-line learning
results, the performance of on-line learning does not fall
behind that of off-line learning.

The results of the on-line and off-line learning of the
fuzzy ARTMAP neural network show that mean or
max. test errors (%) are in acceptable error boundaries
for V and f'respectively, and by the proposed algorithm,
the previously learned information - weights, categories,
etc. - of the network on the cutting conditions is
replaced to the new ones.

5. Conclusion

In this paper, a new methodology that enables the
model to generate enhanced cutting conditions while the
system is in continual use is proposed; the new algo-

rithm for milling processes is developed and integrated
into an operation planning system. Through experiments
and testing runs, it is verified that the necessary part of
the model can be replaced and improved during its use
without the time consuming re-training of the back-
propagation neural network.

Although this methodology has been applied only to
milling operations in the current work, it also can be
applied to turning operations with a little modification
on the fuzzy ARTMAP input parameters. Furthermore,
the proposed methodology can be adopted in other soft-
ware systems that make decisions based on knowledge
represented by numerical or literal values. In conclu-
sion, the new algorithm provides many benefits such as
safe operation, reduced time and reduced cost in the
manufacturing operations.
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