Body Residue-based Approach as an Alternative of the External Concentration-based Approach for the Ecological Risk Assessment

외부환경농도에 기반한 생태위해성 평가방법의 대안으로서 생체잔류량 접근법

  • Lee Jong-Hyeon (Neo Environmental Business Co. Institute of Environmental Protection and Safety)
  • 이종현 ((주)네오엔비즈, 환경안전연구소)
  • Published : 2006.06.01

Abstract

환경오염물질로부터 수생태계 보호를 위한 표준적인 평가 및 관리 수단인 수질환경기준은 오염물질의 독성작용이 일어나는 표적기관에서의 오염물질의 농도에 대한 대체측정치로서 환경 내 오염물질의 농도를 이용해 왔다. 이러한 '외부환경농도에 기반한 접근방법'은 표적기관에서의 독성물질의 농도가 생물체내 농도에 비례하고, 결국 외부환경농도에도 비례할 것이라고 가정한다. 따라서 환경오염물질의 생물이용도나 생물축적 양상의 차이 때문에 고유 독성치를 비교 평가하는데 한계가 있다. 이와 달리 '생물체내 농도에 기반한 접근방법(이하 생체잔류량 접근법)'은 환경오염물질의 생물이용도나 종 특이적 생물축적 양상과 관련된 불확실성을 제거하고, 환경오염물질 고유의 독성을 비교 평가할 수 있게 해준다. 특히 생체잔류량 접근법을 독성동태학 및 독성역학 모델과 함께 사용하는 경우는 실제 현장에서 일어나는 복잡한 노출조건에서의 독성영향을 예측하는데 활용할 수 있다. '생체잔류량 접근법'은 독성기작별 임계잔류량(Critical Body Residue)을 결정함으로써 생물모니터링의 결과를 해석하는데 적용되고 있다. 또한 생태위해성평가를 위해서 필요한 '무영향예측농도(Predicted No-effect Concentration, PNEC)를 예측하기 위한 방법으로 생체 내 잔류량에 기반해서 농도-시간-반응관계를 기술하고, 예측할 수 있는 새로운 유형의 독성역학 및 독성동태학 모델을 제시하고, 생체내 '무영향농도(No Effect Concentration, NEC)'를 추정하게 해 준다. 특히 생체내 NEC는 '무영향관찰농도(No Observed Effect Concentration, NOEC)'와 '영향농도(Effect Concentration, EC)'처럼 분산분석이나 회귀분석모델과 같은 통계적 모델에 기반해서, 농도-반응관계만을 기술할 뿐인 기존 독성모델을 대체할 대안으로 최근에 OECD와 ISO에 의해서 추천되었다.분석을 시행한 결과 인지기능 장애정도 및 MMSEK 점수 증가에 따른 사망위험도는 어느 모형에서도 인지기능 장애정도가 사망에 미치는 위험도는 통계적으로 유의하지 않았다(표 6, 표 7). 이상 본 연구는 농촌지역 노인들에서 인지기능 장애정도가 사망에 미치는 영향을 알아보고자 하였지만, 인지기능 장애정도가 사망에 미치는 영향을 통계적으로 유의하게 고찰하지 못하였다.의한 차이를 보였다. (P<0.05, P<0.001) 5. Excelco로 부식처리된 도재가 5% HF 용액으로 부식처리된 도재보다 부식정도가 더 현저하였다.은 제언을 하고자 한다. 먼저, 학교급식에 대한 식단 작성 시 학생들이 학교에서 제공되기 원하는 식단에 대한 의견을 받고 그 의견에 대한 결과를 게시하여 학생들이 제공되기 원하는 식단을 급식 시 제공하여 학생들이 식단선택에 동참할 수 있는 기회를 주는 것이 바람직하겠다. 또한 영양사는 학급의 반대표와의 정기적인 모임을 가짐으로서 학생들의 불만사항 및 개선 요구사항에대해 서로 의견을 교환하여 설문지조사가 아닌 직접적인 대화를 하여 문제점을 파악하고자 하는 적극적인 자세가 필요하겠다. 특히 아침식사의 결식 빈도가 높았고 이는 급식성과에 부정적인 영향을 줄 뿐 아니라 학교에서 제공하는 음식의 섭취정도에도 영향을 주고 있으므로 학생들에게 학부모와 전담교사 및 학교영양사는 학생들에게 이상적인 아침식사에 대한 교육은 물론이고 아침식사를 실천할 수 있도록 다양한 방안에 대해 함께 연구해야 하겠다. 정부차원에서 학교급식에 아침식사 프로그램을 도입할 수 있는 방안을 연구하고, 아침을 결식하는 학생이 학교에서 수업시작 하기 전에 간단한 식사를 할 수 있는 정책 도입이 필요하다acid의 생성량(生成量)을 측정(測定)하였는데 periodate의 소비량(消費量)은 1.23 mole, formic acid의 생성량(生成量)은 0.78 mole이다.한 경우도 비교적 많이 먹고 있었다(24.3%). 남 여

Keywords

References

  1. Arthur AD and Dixon DG. Effects of rearing density on the growth response of juvenile fathead minnow (Pimephales promelas) under toxicant-induced stress, Can J Fish Aquat Sci 1993; 51: 365-371 https://doi.org/10.1139/f94-037
  2. Barnthouse LW. Quantifying population recovery rates for ecological risk assessment, Environ Toxicol Chem 2003; 23(2): 500-508 https://doi.org/10.1897/02-521
  3. Barron MG, Hansen JA, Lipton J. Association between contaminant tissue residues and effects in aquatic organisms, Rev Environ Contam T 2002; 173: 1-37
  4. Chapman PM, Caldwell RS and Chapman PF. A warning: NOECs are inappropriate for regulatory use. Environ Toxicol Chem 1996; 15: 77-79 https://doi.org/10.1897/1551-5028(1996)015<0077:AWNAIF>2.3.CO;2
  5. Chapman PM. Alternatives to the NOEC based on regression analysis. In Report of the OECD Workshop on Statistical Analysis of Aquatic Toxicity Data., volume 10 of OECD Environmental Health and Safety Publications, pp. 59-63. OECD, 1998
  6. De Bruijin JHM and van Leeuwen CJ, No-effect concentrations in environmental policy. In Kooijman and Bedaux eds, The analysis of aquatic toxicity data. VU University Press, 1996
  7. Di Toro DM, Zarba CS, Hansen DJ, Berry WJ, Swartz RC, Cowan CE, Pavlou SP, Allen HE, Thomas NA, Paquin PR. Technical basis for the equilibrium partitioning method for establishing sediment quality criteria. Environ Toxicol Chem 1991; 11: 1541-1583
  8. Di Toro DM, McGrath JA and Hansen DJ. Technical basis for narcotic chemicals and polycyclic aromatic hydrocarbon criteria. I. Water and tissue, Environ Toxicol Chem 2000; 19: 1951-1970 https://doi.org/10.1897/1551-5028(2000)019<1951:TBFNCA>2.3.CO;2
  9. Escher BI and Hermens JLM. Modes of action in ecotoxicology: their role in body burdens, species sensitivity, QSARs, and mixture effects, Environ Sci Technol 2002; 36: 4201-4217 https://doi.org/10.1021/es015848h
  10. Fisher SW, Chordas III SW and Landrum PF. Lethal and sublethal body residues for PCB intoxication in the oligochaete, Lumbriculus variegates, Aquat Toxicol 1999; 45: 115-126 https://doi.org/10.1016/S0166-445X(98)00103-9
  11. Forbes VE and Calow P, Is the per capita rate of increase a good measure of population-level effects in ecotoxicology?, Environ Toxicol Chem 1999; 18: 1544-1556 https://doi.org/10.1897/1551-5028(1999)018<1544:ITPCRO>2.3.CO;2
  12. Hamelink JL, Landrum PF, Bergman HL, Benson WH. Bioavailability: Physical, Chemical, and Biological Interactions , Lewis Publishers, Boca Raton, 1994
  13. Hickie BE, McCarty LS and Dixon DG. A residue-based toxicokinetic model for pulse-exposure toxicity in aquatic systems, Environ Toxicol Chem 1995; 14: 2187-2197 https://doi.org/10.1897/1552-8618(1995)14[2187:ARTMFP]2.0.CO;2
  14. Jarvinen AW and Ankley GT. Linkage of Effects to Tissue Residues: Development of a Comprehensive Database for Aquatic Organisms Exposed to Inorganic and Organic Chemicals. SETAC Press, Pensacola, FL. 1999
  15. Kane Driscoll S, Harkey GA and Landrum PF. Accumulation and toxicokinetics of fluoranthene in sediment bioassays with freshwater amphipods, Environ Toxicol Chem 1997a; 16: 742-753 https://doi.org/10.1897/1551-5028(1997)016<0742:AATOFI>2.3.CO;2
  16. Kane Driscoll S, Harkey GA and Landrum PF. Accumulation and toxicokinetics of fluoranthene in water-only exposure with freshwater amphipods, Environ Toxicol Chem 1997b; 16: 754-761 https://doi.org/10.1897/1551-5028(1997)016<0754:AATOFI>2.3.CO;2
  17. Kenaga EE. Predictability of chronic toxicity from acute toxicity of chemicals in fish aquatic invertebrates, Environ Toxicol Chem 1982; 1: 347-358 https://doi.org/10.1897/1552-8618(1982)1[347:POCTFA]2.0.CO;2
  18. Kooijman SALM and Bedaux JJM. The analysis of Aquatic Toxicity Data: VU University Press. Amsterdam, 1996
  19. Landrum PF, Dupuls WS and Kukkonen J. Toxicokinetics and toxicity of sediment-associated pyrene and phenanthrene in Diporeia spp.: examination of equilibriumpartitioning theory and residue-based effect for assessing hazard, Environ Toxicol Chem 1994; 13: 1769-1780 https://doi.org/10.1897/1552-8618(1994)13[1769:TATOSP]2.0.CO;2
  20. Landrum PF, Eadie BJ, Faust WR. Variation in the bioavailability of polycyclic aromatic hydrocarbons to the amphipod Diporeia (spp.) with sediment aging, Environ Toxicol Chem 1992; 11: 1197-1208 https://doi.org/10.1897/1552-8618(1992)11[1197:VITBOP]2.0.CO;2
  21. Landrum PF, Steevens JA, McElroy M, Gossiaux DC, Lewis JS and Robinson SD. Time-dependent toxicity of dichlorodiphenyldichloroethylene to Hyalella azteca, Environ Toxicol Chem 2005; 24: 211-218 https://doi.org/10.1897/04-055R.1
  22. Lee J-H, Landrum PF and Koh C-H. Prediction of timedependent PAH toxicity in Hyalella azteca using a damage assessment model, Environ Sci Technol 2002; 36: 3131-3138 https://doi.org/10.1021/es011202d
  23. Legierse KCHM, Verhaar HJM, Vaes WHJ, Wouter HJ, De Bruijn JHM and Hermens JLM. Analysis of the timedependent acute aquatic toxicity of organophosphorus pesticides: the critical target occupation model, Environ Sci Tehchol 1999; 33: 917-925 https://doi.org/10.1021/es9805066
  24. Luoma SN and Rainbow PS. Why is metal bioaccumulation so variable? Biodynamics as a unifying concept, Environ Sci Technol 2005; 39: 1921-193 https://doi.org/10.1021/es048947e
  25. Luoma SN, Jones C, Fisher NS, Steinberg NA, Oremland RS, Reinfelder J. Determination of selenium bioavailability to a benthic bivalve from particulate and solute pathways. Environ Sci Technol 1992; 26: 485-491 https://doi.org/10.1021/es00027a005
  26. Luoma SN and Rainbow PS. Why is metal bioaccumulation so variable? Biodynamics as a unifying concept, Environ Sci Technol 2005; 39: 1921-1931 https://doi.org/10.1021/es048947e
  27. Magaud. Guidance document on the statistical interpretation of ecotoxicity tests., volume TC 147/ SC 5/ WG 10/ N 0390. ISO and OECD, Paris, 2003
  28. Mayer FL, Krause GF, Buckler DR, Ellersieck MR and Lee G. Predicting chronic lethality of chemicals to fishes from acute toxicity test data: concepts and linear regression analysis, Environ Toxicol Chem 1994; 13: 671-678 https://doi.org/10.1897/1552-8618(1994)13[671:PCLOCT]2.0.CO;2
  29. McCarty LS and Mackay D. Enhancing ecotoxicological modeling and assessment, Environ Sci Tehchol 1993; 27: 1719-1728
  30. McCarty LS, Ozburn GW, Smith AD, Bharath A, Orr D and Dixon DG. Hypothesis formulation and testing in aquatic bioassays: a deterministic model approach, Hydrobiologia 1989; 188/189: 533-542 https://doi.org/10.1007/BF00027821
  31. McCarty LS, Mackay D, Smith AD, Ozburn GW and Dixon DG. Residue-based interpretation of toxicity and bioconcentration QSARs from aquatic bioassays: neutral narcotic organics, Environ Tox Chem 1992; 11: 917-930 https://doi.org/10.1897/1552-8618(1992)11[917:RIOTAB]2.0.CO;2
  32. Mortimer MR and Connell DW. Effect of exposure to chlorobenzenes on growth-rates of the crab Portunus pelagicus (L), Environ Sci Technol 1995; 29: 1881-1886 https://doi.org/10.1021/es00008a003
  33. Newman MC and Unger MA. Fundamental of Ecotoxicology. Lewis Publishers, 2003
  34. Pack S. A Review of Statistical Data Analyses and Experimental Design in OECD Aquatic Toxicology Test Guidelines. Shell research Ltd. Sittingbourne, Kent, UK. 1993
  35. Rand GM, Wells PG and McCarty LS. Introduction to aquatic toxicology. In Fundermentals of Aquatic Toxicology 2nd edition, ed, Rand GM, Taylor and Francis, Washington DC, pp. 3-67, 1995
  36. Reiley MC, Stubblefield WA, Adams WJ, Di Toro DM, Hodson PV, Erickson RJ and Keating Jr FJ. Reevaluation of the State of the Science for Water-qaulity Criteria Development; Society of Environmental Toxicology and Chemistry (SETAC); Pensacola. FL. USA. 2003
  37. Reinert KH, Giddings JM and Judd L. Effect analysis of time-varying or repeated exposures in aquatic ecological risk assessment of agrochemicals, Environ Toxicol Chem 2002; 21: 1977-1992 https://doi.org/10.1897/1551-5028(2002)021<1977:EAOTVO>2.0.CO;2
  38. Roex EWM, van Giestel CAM, van Wezel AP and van Straalen NM. Ratios between acute aquatic toxicity and effects on polulation growth rates in relation to toxicant mode of action, Environ Toxicol Chem 2000; 19: 685-693 https://doi.org/10.1897/1551-5028(2000)019<0685:RBAATA>2.3.CO;2
  39. Sijm DTHM, Schipper M and Opperhuizen A. Toxicokinetics of halogenated benezens in fish: lethal body burden as a toxicological end point, Environ Toxicol Chem 1993; 12: 1117-1127 https://doi.org/10.1897/1552-8618(1993)12[1117:TOHBIF]2.0.CO;2
  40. Spargue JB. Measurement of pollutant toxicity to fish. 1. Bioassay methods for acute toxicity, Water Res 1969; 3: 93-821 https://doi.org/10.1016/0043-1354(69)90069-4
  41. Tessier A and Turner DR. Metal Speciation and Bioavailability in Aquatic Systems. John Wiley & Sons, 1995
  42. US Environmental Protection Agency. Water quality standards regulation; proposed rule, Federal register, 1998; 63: 36742-36806
  43. US Environmental Protection Agency. Methodology for Deriving Ambient Water Quality Criteria for the Protection of Human Health. Office of Water and Office of Science and Technology, EPA-822-B-00-004. 2000
  44. van Hoogen G and Opperhuizen M. Toxicokinetic of chlorobenzenes in fish, Environ Toxicol Chem 1988; 7: 213-219 https://doi.org/10.1897/1552-8618(1988)7[213:TOCIF]2.0.CO;2
  45. Van Wazel AP, De Vries DAM, Kostense S, Sijm DTHM and Opperhuizen A. The relevance of aquatic organisms' lipid content to the toxicity of lipophillic chemicals: toxicity of lindane to different fish species, Ecotoxicol Environ Safe 1995; 28: 53-70 https://doi.org/10.1006/eesa.1994.1034
  46. Verhaar HJM, de Wolf W, Dyer S, Legierse KCHM, Seinen W and Hermens JLM. An LC50 vs time model for the aquatic toxicity of reactive and receptor-mediated compounds. Consequences for bioconcentration kinetics and resk assessment, Environ Sci Tehchol 1999; 33: 758-763 https://doi.org/10.1021/es980507y
  47. Verhaar HJM, van Leeuwen CJ and Hermens JLM. Classifying environmental pollutants. Structure-activity relationships for prediction of aquatic toxicity, Chemosphere 1992; 25: 471-491 https://doi.org/10.1016/0045-6535(92)90280-5
  48. Yu Q, Chaisuksant Y and Connell DW. A model for nonspecific toxicity with aquatic organisms over relatively long periods of exposure time, Chemosphere 1999; 38: 909-918 https://doi.org/10.1016/S0045-6535(98)00220-3