A Study on the Short-term Load Forecasting using Support Vector Machine

지원벡터머신을 이용한 단기전력 수요예측에 관한 연구

  • 조남훈 (숭실대 공대 전기공학부) ;
  • 송경빈 (숭실대 공대 전기공학부) ;
  • 노영수 (숭실대 공대 전기공학부) ;
  • 강대승 (숭실대 공대 전기공학부)
  • Published : 2006.07.01

Abstract

Support Vector Machine(SVM), of which the foundations have been developed by Vapnik (1995), is gaining popularity thanks to many attractive features and promising empirical performance. In this paper, we propose a new short-term load forecasting technique based on SVM. We discuss the input vector selection of SVM for load forecasting and analyze the prediction performance for various SVM parameters such as kernel function, cost coefficient C, and $\varepsilon$ (the width of 8 $\varepsilon-tube$). The computer simulation shows that the prediction performance of the proposed method is superior to that of the conventional neural networks.

Keywords

References

  1. A.P. Douglas, AM. Breipohl, F.N. Lee, and R. Adapa, 'The impact of temperature forecast uncertainty on bayesian load forecasting,' IEEE Trans. Power Systems, vol. 13, no. 4, pp. 1507-1513, 1998 https://doi.org/10.1109/59.736298
  2. S.R. Huang, 'Short-term load forecasting using threshold autoregressive models,' IEEE Proc.-Gener, Transm. Distrib., vol. 144, no. 5, pp. 477-481, 1997 https://doi.org/10.1049/ip-gtd:19971144
  3. D.G. Infield and D.C. Hill, 'Optimal smoothing for trend removal in short term electricity demand forecasting,' IEEE Trans. Power Systems, vol. 13, no. 3, pp. 1115-1120, 1998 https://doi.org/10.1109/59.709108
  4. J.H. Park, Y.M. Park, and K.Y. Lee, 'Composite modeling for adaptive short-term load forecasting,' IEEE Trans. Power Systems, vol. 6, no. 2, pp. 450-457, 1991 https://doi.org/10.1109/59.76686
  5. H.T. Yang and C.M. Huang, 'A new short-term load forecasting approach using self-organizing fuzzy ARMAX models,' IEEE Trans. Power Systems, vol. 13, no. 1, pp. 217-225, 1998 https://doi.org/10.1109/59.651639
  6. W. Charytoniuk, M.S. Chen, and P. Van Olinda, 'Nonparametric regression based short-term load forecasting,' IEEE Trans. Power Systems, vol. 13, no. 3, pp. 725-730, 1998 https://doi.org/10.1109/59.708572
  7. J.W. Taylor and S. Majithia, 'Using combined forecasts with changing weights for electricity demand profiling,' J. Oper, Res. Soc., vol. 51, no. 1, pp. 72-82, 2000 https://doi.org/10.1057/palgrave.jors.2600856
  8. S. Rahman and O. Hazim, 'A generalized knowledgebased short-term load-forecasting technique,' IEEE Trans. Power Systems, vol. 8, no. 2, pp. 508-514, 1993 https://doi.org/10.1109/59.260833
  9. H. Mori and H. Kobayashi, 'Optimal fuzzy inference for short-term load forecasting,' IEEE Trans. Power Systems, vol. 11, no. 1, pp. 390-396, 1996 https://doi.org/10.1109/59.486123
  10. S.E. Papadakis, J.B. Theocharis, S.J. Kiartzis, and A.G. Bakirtzis, 'A novel approach to short-term load forecasting using fuzzy neural networks,' IEEE Trans. Power Systems, vol. 13, no. 2, pp, 480-492, 1998 https://doi.org/10.1109/59.667372
  11. Kyung-Bin Song, Young-Sik Baek, Dug Hun Hong, and lang, G., 'Short-term load forecasting for the holidays using fuzzy linear regression method,' IEEE Trans. Power Systems, vol. 20, no. 1, pp. 96-101, 2005 https://doi.org/10.1109/TPWRS.2004.835632
  12. I. Drezga and S. Rahman, 'Input variable selection for ANN-based short-term load forecasting,' IEEE Trans. Power Systems, vol. 13, no. 4, pp. 1238-1244, 1998 https://doi.org/10.1109/59.736244
  13. H.S. Hippert, C.E. Pedriera, and R.C. Souza, 'Neural Networks for Short-term Load Forecasting: A Review and Evaluation,' IEEE Trans. Power Systems, vol. 16, no. 1, pp. 44-55, 2001 https://doi.org/10.1109/59.910780
  14. A. Khotanzad, R. Afkhami-Rohani, and D. MaratukuIam, 'ANNSTLF-Artificial neural network short-term load forecaster-Generation three,' IEEE Trans. Power Systems, vol. 13, no. 4, pp, 1413-1422, 1998 https://doi.org/10.1109/59.736285
  15. Reis, A.J.R and da Silva, AP.A., 'Feature extraction via multiresolution analysis for short-term load forecasting,' IEEE Trans. Power Systems, vol. 20, no. 1, pp. 189-198, 2005 https://doi.org/10.1109/TPWRS.2004.840380
  16. C.H.C. Burges, 'A tutorial on Support Vector Machines for Pattern Recognition,' Data Mining and Knowledge Discovery,' pp, 121-167, 1998
  17. B.J. Chen, MW. Chang, and C.J. Lin, 'Load Forecasting using SVM : A study on EUNITE Competition 2001,' IEEE Trans. Power Systems, 2004, pp, 1821-1830 https://doi.org/10.1109/TPWRS.2004.835679
  18. N. Cristianini and J. Shawe-Taylor, 'An introduction to Support Vector Machines,' Cambridge University press, 2003
  19. S.R. Gunn, 'Support Vector Machines for Classification and Regression,' Technical Report, 1998
  20. A.J. Smola, B. Scholkopf, 'A tutorial on support vector regression,' Neuro COLT2 Technical Report Series, 1998
  21. V. Vapnik, S.E. Golowich, A.Smola, 'Support Vector Method for function approximation, regression estimation, and signal processing,' Advances in neural information processing systems, pp, 281-287, 1997
  22. 하성관, 송경빈, 김홍래, '신경회로망과 하절기 온도 민감도를 이용한 단기 전력 수요 예측,' 전기학회 논문지, Vol. 54A,No.6,pp. 259-266, Jun., 2005
  23. 지평식,남상천,임재윤,김정훈,'분류된 부하패턴올 근거로 한 단기 전력 수요 예측,' 대한전기학회논문지,Vol. 47,No.3,pp. 269-275,March,1998