Abstract
We analyzed systematically particle growth in the pulsed $SiH_4$ plasmas by a numerical method and investigated the effects of pulse modulations (pulse frequencies, duty ratios) on the particle growth. We considered effects of particle charging on the particle growth by coagulation during plasma-on. During plasma-on ($t_{on}$), the particle size distribution in plasma reactor becomes bimodal (small sized and large sized particles groups). During plasma-off ($t_{off}$), there is a single mode of large sized particles which is widely dispersed in the particle size distribution. During plasma on, the large sized particles grows more quickly by fast coagulation between small and large sized particles than during plasma-off. As the pulse frequency decreases, or as the duty ratio increases, $t_{on}$ increases and the large sized particles grow faster. On the basis of these results, the pulsed plasma process can be a good method to suppress efficiently the generation and growth of particles in $SiH_4$ PCVD process. This systematical analysis can be applied to design a pulsed plasma process for the preparation of high quality thin films.