db/db 마우스에서 IH-901의 항 당뇨 활성

Antidiabetic Activity of IH-901 in db/db Mice

  • 최윤숙 (경희대학교 약학대학 약물학 임상약학 교실) ;
  • 한기철 (경희대학교 약학대학 약물학 임상약학 교실) ;
  • 한은정 (경희대학교 약학대학 약물학 임상약학 교실) ;
  • 박금주 (경희대학교 약학대학 약물학 임상약학 교실) ;
  • 박종석 (경희대학교 약학대학 약물학 임상약학 교실) ;
  • 성종환 ((주) 일화 중앙연구소) ;
  • 정성현 (경희대학교 약학대학 약물학 임상약학 교실)
  • Choi, Yun-Suk (Pharmacology and Clinical Pharmacy Lab., College of Pharmacy, Kyung Hee University) ;
  • Han, Gi-Cheol (Pharmacology and Clinical Pharmacy Lab., College of Pharmacy, Kyung Hee University) ;
  • Han, Eun-Jung (Pharmacology and Clinical Pharmacy Lab., College of Pharmacy, Kyung Hee University) ;
  • Park, Keum-Joo (Pharmacology and Clinical Pharmacy Lab., College of Pharmacy, Kyung Hee University) ;
  • Park, Jong-Suk (Pharmacology and Clinical Pharmacy Lab., College of Pharmacy, Kyung Hee University) ;
  • Sung, Jong-Hwan (ILHWA Co. LTD. Central Research Center) ;
  • Chung, Sung-Hyun (Pharmacology and Clinical Pharmacy Lab., College of Pharmacy, Kyung Hee University)
  • 발행 : 2006.12.31

초록

The pharmacological properties of ginseng are mainly attributed to ginsenosides, the active constituents that are found in the extracts of different species of ginseng. Lately; the studies on ginsenosides are mainly focused on IH-901, a major intestinal bacterial metabolite of ginsenosides. In this study; we examined the anti-diabetic activity of IH-901 in C57BU61 db/db mice model. IH-901 was administrated orally at a dose of 20 mg/kg for 5 weeks. During the experimental period, body weight and blood glucose levels were measured every week. After 5 weeks, db/db mice were sacrificed and diabetic parameters were analyzed. IH-901 treated group showed a significant decrease in fasting blood glucose levels (from 10.5 mM to 9.4 mM), insulin resistance index (from 163.6 to 100.2) and triglyceride levels (from 115.3 to 70.1) compared to the diabetic control. In Pancreatic islets morphology; IH-901 treated group revealed much less infltrated mononuclear cells, indicating that IH-901 recovered ${\beta}$-cell damage due to hyperglycemia. In addition, IH-901 upregulated expressions of glucose transporter 4 (GLUT4) and PPAR-${\gamma}$ in skeletal muscle and adipose tissue, respectively. Taken together IH-901might be a potential anti-hyperglycemic agent with insulin sensitizing effect.

키워드

참고문헌

  1. Tai, E. S., Lim, S. D., Tan, B. Y., Chew, S. K., Heng, D. and Tan, C. E. : Screening for diabetes mellitus: a two-step approach in individuals with impaired fasting glucose improves detection of those at risk of complications. Diabet Med. 17, 771 (2000) https://doi.org/10.1046/j.1464-5491.2000.00382.x
  2. Ko, S. K., Kim, J. S., Choi, Y. E., Lee, S. J., Park, K. S. and Chung, S. H : Anti-diabetic effects of mixed water extract from ginseng radix rubra, acanthopanacis cortex, and cordyceps. Kor. J. Pharmacogn. 33(4), 337 (2002)
  3. Korea national statical office : The cause of death statics. (2004)
  4. Attele, A. S., Zhou, Y. P., Xie, J. T., Wu, J. A., Zhang, L., Dey, L., Pugh, W., Rue, P. A., Polonsky, K. S. and Yuan, C. S. : Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes 51, 1851 (2002) https://doi.org/10.2337/diabetes.51.6.1851
  5. Cavaghan, M. A., Ehrmann, D. A. and Polonsky, K. S. : Interaction between insulin resistance and insulin secretion in the development of glucose intolerance. J. Clin. Invest. 106, 329 (2000) https://doi.org/10.1172/JCI10761
  6. Diabetes Control and Complications Trial Research Group : The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329, 977 (1993) https://doi.org/10.1056/NEJM199309303291401
  7. Defronzo, R. A. : Pharmacologic therapy for type 2 diabetes mellitus. Ann. Intern. Med. 131, 281 (1999) https://doi.org/10.7326/0003-4819-131-4-199908170-00008
  8. Anoja, S., Wu, J. A. and Yuan, C. S. : Ginseng pharmacology: multiple constituents and multiple actions. Biochem. Pharmacol. 58, 1685 (1999) https://doi.org/10.1016/S0006-2952(99)00212-9
  9. Kimura, M., Waki, L., Chujo, T., Kikuchi, T., Hiyama, C., Yamazaki, K. and Tanaka, O. : Effects of hypoglycemic components in Ginseng radix on blood insulin level in alloxan diabetic mice and on insulin release from perfused rat pancreas. J. Pharmacobiodyn. 4(6), 410 (1981) https://doi.org/10.1248/bpb1978.4.410
  10. Yokozawa, Kobayashi, T., Oura, H. and Kawashima, Y. : Studies on the mechanism of the hypoglycemic activity of ginsenosides-Rb2 in streptozotocin-diabetic rats. Chem. Pharm. Bull. 33, 869 (1985) https://doi.org/10.1248/cpb.33.869
  11. Sotaniemi, E. A., Haapakoski, E. and Rautio, A. : Ginseng therapy in non-insulin-dependent diabetic patients. Diabetes Care. 18(10), 1373 (1995) https://doi.org/10.2337/diacare.18.10.1373
  12. Joo, C. N. and Kim, J. H. : Study on the hypoglycemic action of ginseng saponin on streptozotocin induced diabetic rats (1) Korean J. Ginseng Sci. 16(3), 190 (1992)
  13. Joo, C. N., Yoon, S. H., Lee, H. S., Kim, Y. D., Lee, H. B. and Koo, J. H. : Study on the hypoglycemic action of ginseng saponin on streptozotocin induced diabetic rats (1). Korean J. Ginseng Sci. 16(3), 190 (1992)
  14. Vuksan, V. and Sievenpiper J. L. : Herbal remedies in the management of diabetes: Lessons learned from the study of ginseng. Nutr. Metab. Cardiovasc. Dis. 15, 149 (2005) https://doi.org/10.1016/j.numecd.2005.05.001
  15. Hasegawa, H., Sung, J. H., Matsumiya, S. and Uchiyama, M. : Metabolism of Ginseng saponin by human intestinal bacteria, and isolation and identification of the bacteria associated with the metabolism. J. Trad. Med. 14, 396 (1997)
  16. Hasegawa, H., Sung, J. H., Matsumiya, S. and Uchiyama, M. : Pharmacodynamic analysis of Ginseng saponin metabolites formed by human intestinal bacteria. J. Trad. Med. 14, 394 (1997)
  17. Hasegawa, H., Sung, J. H. and Huh, J. D. : Ginseng intestinal bacterial metabolite IH-901 as a new anti-metastatic agent. Arch. Pharm. Res. 20, 539 (1997) https://doi.org/10.1007/BF02975208
  18. Lee, B. H., Lee, S. J., Hui, J. H., Lee, S. Y., Sung, J. H., Hui, J. D. and Moon, C. K. : In vitro antigenotoxic of novel Ginseng saponin metabolites formed by intestinal bacteria. Planta Med. 64, 500 (1998) https://doi.org/10.1055/s-2006-957501
  19. Lee, S. J., Sung, J. H., Lee, S. J., Moon, C. K. and Lee, B. H. : Antitimor activity of a novel ginseng saponin metabolite in human pulmonary adenocarcinoma cells resistant to cisplatin. Cancer Lett. 144, 39 (1999) https://doi.org/10.1016/S0304-3835(99)00188-3
  20. Suda, K., Murakami, K., Murata, J., Hasegawa, H. and Saiki, I. : An intestinal bacterial metabolite (M1) of ginseng protopanaxadiol saponin inhibits tumor-induced neovascularization. J. Trad. Med. 17, 144 (2000)
  21. Lee, S. J., Ko, W. G., Kim, J. H., Sung J. H., Lee, S. J., Moon, C. K. and Lee, B. H. : Induction of apoptosis by a novel intestinal metabolite of Ginseng saponin via cytochrome c-mediated activation of caspase-3 protease. Biochem. Pharmacol. 60, 677 (2000) https://doi.org/10.1016/S0006-2952(00)00362-2
  22. Ko, S. K., Sung, J. H., Choi, Y. E., Lee, C. R., Park, K. S. and Chung, S. H. : Comparisons of antidiabetic activities between white ginseng ethanol extract and IH-901 in steptozotocininduced diabetic rats. Yakhak Hoeji 47(1), 52 (2003)
  23. Trinder, P. : Determination of blood glucose using an oxidaseperoxidase system with a non-carcinogenic chromogen. J. Clin. Pathol. 22, 158 (1969) https://doi.org/10.1136/jcp.22.2.158
  24. Chomczynski, P. and Sacchi, N. : Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162(1), 156 (1987)
  25. Matthews, D. R., Hosker, J. P., Rudenski, A. S., Naylor, B. A., Treacher, D. F. and Turner, R. L. : Homeostasis model assessment: insulin resistance and B cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412 (1985) https://doi.org/10.1007/BF00280883
  26. Barthel, A. and Schmoll, D. : Novel concepts in insulin regulation of hepatic gluconeogenesis. Am. J. Physiol. Endocrinol. Metab. 285(4), E685 (2003) https://doi.org/10.1152/ajpendo.00253.2003
  27. Davies, G. F., Khandelwal, R. L., Wu, L., Juurlink, B. H. and Roesler W. J. : Inhibition of phosphoenolpyruvate carboxykinase (PEPCK) gene expression by troglitazone: a peroxisome proliferator-activated receptor-${\gamma}$ ($PPAR{\gamma}$)- independent, antioxidant-related mechanism. Biochem. Pharmacol. 62(8), 1071 (2001) https://doi.org/10.1016/S0006-2952(01)00764-X
  28. Rosen, E. D. and Spiegelman, B. M. : $PPAR{\gamma}$: a nuclear regulator of metabolism, differentiation, and cell growth. J. Biol. Chem. 276, 37731 (2001) https://doi.org/10.1074/jbc.R100034200
  29. Ge, K., Guermah, M., Yuan, C. X., Ito, M. Wallberg, A. E., Spiegelman, B. M. and Roeder, R. G. : Transcription coactivator TRAP220 is required for $PPAR{\gamma}2$-stimulated adipogenesis. Nature 417, 563 (2002) https://doi.org/10.1038/417563a