References
- Gibbons, R.J. Adherence interactions that may affect microbial ecology in the mouth. J Dent Res 63: 378-385, 1984 https://doi.org/10.1177/00220345840630030401
- Oh, T.J., Eber, R., Wang, H.L. Periodontal diseases in the child and adolescent. J Clin Periodontol 29: 400-410, 2002 https://doi.org/10.1034/j.1600-051X.2002.290504.x
- Shani, S., Friedman, M., Steinberg, D. The anticariogenic effect of amine fluorides on Streptococcus sobrinus and glucosyltransferase in biofilms. Caries Res 34: 260-267, 2000 https://doi.org/10.1159/000016600
- Hamada, S., Slade, H.D. Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev 44: 331-384, 1980
- Rupp, M.E., Archer, G.L. Coagulase-negative staphylococci: pathogens associated with medical progress. Clin Infect Dis 19:231-245, 1994 https://doi.org/10.1093/clinids/19.2.231
- Hamada, S., Koga, T., Ooshima, T. Virulence factors of Streptococcus mutans and dental caries prevention. J Dent Res 63: 407-411, 1984 https://doi.org/10.1177/00220345840630031001
- Jarvinen, H., Tenovuo, J., Huovinen, P. In vitro susceptibility of Streptococcus mutans to chlorhexidine and six other antimicrobial agents. Antimicrob Agents Chemother 37: 1158-1159, 1993 https://doi.org/10.1128/AAC.37.5.1158
- Namba, T., Tsunezuka, M., Hattori, M. Dental caries prevention by traditional chineses medicines. Part II. Potent antibacterial action of magnoliae cortex extracts against Streptococcus mutans. Planta Med 44: 100-106, 1982 https://doi.org/10.1055/s-2007-971412
- Bensky, D., Gamble, A. Materia medica. Eastland press: Washington pp 161-162, 1986
- Chao, T.H., Lam, T., Vong, B.G., Traves, P.G., Hortelano, S., Chowdhury, C., Bahjat, F.R., Lloyd, G.K., Moldawer, L.L., Bosca, L., Palladino, M.A., Theodorakis, E.A. A new family of synthetic diterpenes that regulates cytokine synthesis by inhibiting Ikappa Balpha phosphorylation. Chem Biochem 6: 133-144, 2005 https://doi.org/10.1002/cbic.200400089
-
Kang, H.S., Kim, Y.H., Lee, C.S., Lee, J.J., Choi, I., Pyun, K.H. Suppression of interleukin-1 and tumor necrosis factor-
$\alpha$ production by acanthoic acid, (-)-pimara-9 (11), 15-dien-19-oic acid, and it antifibrotic effects in vivo. Cell Immunol 170: 212-221, 1996 https://doi.org/10.1006/cimm.1996.0154 -
Kim, J.A., Kim, D.K., Tae, J., Kang, O.H., Choi, Y.A., Choi, S.C., Kim, T.H., Nah, Y.H., Choi, S.J., Kim, Y.H., Bae, K.H., Lee, Y.M. Acanthoic acid inhibits IL-8 production via MAPKs and NF-
$\kappa$ B in a TNF-$\beta$ stimulated intestinal epithelial cell line. Clinica Chimica Acta 342: 192-202, 2004 - Cai, X.F., Lee, I.S., Dat, N.T., Shen, G., Kim, Y.H. Diterpenoids with inhibitory activity against NFAT transcription factor from acanthopanax koreanum. Phytother Res 18: 677-680, 2004 https://doi.org/10.1002/ptr.1523
- Kim, Y.H., Chung, B. Pimaradiene diterpenes from acanthopanax koreanum. J Nat Prod 51: 1080-1083, 1988 https://doi.org/10.1021/np50060a005
- Hwang, J.K., Chung, J.Y., Baek, N.I., Park, J.H. Isopanduratin A from Kaempferia pandurata as an active antibacterial agent against cariogenic Streptococcus mutans. Int J Antimicrob Agents 23: 377-381, 2004 https://doi.org/10.1016/j.ijantimicag.2003.08.011
- Chen, C.P., Lin, C.C., Namba, T. Screening of Taiwanese crude drugs for antibacterial activity against Streptococcus mutans. J Ethnopharmacol 27: 285-295, 1989 https://doi.org/10.1016/0378-8741(89)90003-2